Advanced High School Physical Science - Chemistry (one year) Standards, Supporting Skills, Assessments, and Resources

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Analysis)	 9-12.P.1.1. Students are able to use the Periodic Table to determine the atomic structure of elements, valence number, family relationships, and regions (metals, nonmetals, and metalloids). Determine protons, neutrons, electrons, mass number, and atomic number from the Periodic Table. Determine the number of valence electrons for elements in the main (s&p) blocks of the Periodic Table. Identify the relative 	Early Theories of Matter Early Philosophers John Dalton Defining the Atom Subatomic Particles and the Nuclear Atom Discovering the electron The nuclear atom How Atoms Differ Atomic number Isotopes and mass number Mass of individual atoms Development of the modern Periodic Table History of the Periodic Table 		Chapter 4 Chapter 6

Indicator 1: Describe structures and properties of, and changes in, matter

	metallic character of	Development	
	an element based on its location on the Periodic Table.	- Newland	
		- Meyer Mendevleev	
		- Moseley	
		Modern Periodic Table	
		- Classifying Elements	
		Group (family)	
		-Alkali	
		-Alkaline Earth	
		-Halogen	
		-Noble Gases	
		• Metal vs. Nonmetal	
		• Representative vs. Transition	
		• Transition vs. Inner Transition	
		-Lanthanide vs. Actinide	
		Classifications of Elements	
		• Organize elements by configuration	Chapter 6
		- Valance Electrons	
		- Valance Electrons and Perios	
		- Valence Electrons and	

		Group Numbers Periodic Trends Atomic Radius -period vs. group trend Ionic Radius -period vs. group trend Ionization energy - period vs. group trend Electronegativity - period vs. group trend	
(Comprehension)	 9-12.P.1.2. Students are able to describe ways that atoms combine. Name and write formulas for binary ionic and covalent compounds. Example: sodium 	 Forming Chemical Bonds Chemical bonds formation of positive ions formation of negative ions Formation and nature of Ionic Bonds Ionic bonds 	Chapter 8 & 9

 chloride (NaCl), carbon dioxide (CO₂) Compare the roles of electrons in covalent, ionic, and metallic bonding. Discuss the special nature of carbon covalent bonds. 	 Properties of Ionic Bonds -energy and the Ionic Bond Names and formulas for Ionic formulas for Ionic compounds formulas for Ionic compounds determine the charge (oxidation number) determine the charge (oxidation number) Compounds with Polyatomic Ions naming Ions and Ionic	
	 Alloys Covalent Bond Why do atoms bond? Covalent bond formation Single covalent bond 	
	 Single covalent bond Multiple covalent bonds Sigma vs. Pi Bond Naming Molecules 	

Naming binary molecular compounds	
Naming acids	
- binary	
- ternary or oxyacids	
• Writing formulas from names	
Forces of Attraction	
Intramolecular Forces	
- ionic	
- covalent	
- metallic	Chapter 13
Intermolecular Forces	
- Dispersion Force (London Forces)	
- Dipole-Dipole	
- Hydrogen Bonds	
Liquids and Solids	
Liquids	
- density and comopession	
- fluidity	
- viscosity	

- viscosity and temp	
- surface tension	
- capillary action	
Solids	
• density	
crystalline solids	
- unit cells	
simple vs. body-cent vs. Face centered	tered
molecular solids	
covalent network solids	
ionic solids	
metallic solids	
Phase Changes	
endothermic phase chan	nges
- melting	
- vaporization	
- sublimation	
exothermic phase chang	ges
- condensation	

		- deposition	
		- freezing	
		• phase diagram	
(Application)	9-12.P.1.3. Students are able to predict whether reactions will speed up or slow down as conditions change. Examples: temperature, concentration, surface area, and catalysts	Classifying chemical reactions synthesis reaction combustion reaction decomposition reaction replacement reactions single vs. double Rate of reaction factors	Chapter 10
(Application)	 9-12.P.1.4. Students are able to balance chemical equations by applying the Law of Conservation of Matter. Trace number of particles in diagrams and pictures of balanced 	 Reaction and Equations evidence of chemical reactions representing chemical reactions word equation skeleton equation chemical equation 	Chapter 10

	equations.	 balancing chemical equations 	
	Example: Write out an equation with symbols:	conversation of mass	Chapter 3
	$Mg + 2HCL \rightarrow MgCl_2 + 2H_2$		
	9-12.P.1.5. Students are	Properties of Matter	Chapter 3
	able to distinguish among	• Pure substances	
	nuclear changes.	- element vs. compound	
(Comprehension)	 Differentiate between physical and chemical properties used to describe matter. Identify key indicators of chemical and physical changes. 	 physical properties of matter intensive vs. extensive chemical properties of matter observing properties of matter states of matter gas vs. liquid vs. solid Changes in Matter	
	Describe the effects of changing pressure, volume, or temperature upon gases.	 physical changes chemical changes evidence of chemical reaction 	
	• Identify characteristics of a solution and factors	Mixtures of Matter	

 that affect the rate of solution formation. Explain the differences among nuclear, chemical, and physical changes at the atomic level. Examples: solute, solvent, concentrated, dilute, saturated, unsaturated, supersaturated Factors affecting rate: agitation, heating, particle size, pictures of particles 	 mixtures homogeneous vs. heterogeneous solution vs. colloid vs. suspension solution formation separation of mixtures filtration distillation crystallization chromatography Pure Substances: elements and compounds Law of Definite Proportion Law of Multiple Proportion Gases Kinetic-Molecular Theory particle size particle motion particle energy 	Chapter 18 Chapter 13
	• explain the behavior of gases	

	- low density
	- compession and expansion
	- diffusion vs. effusion
	Graham's Law of Effusion
	Gas Pressure
	- measuring air pressure
	-Barometer vs. manometer
	- units of pressure
	- Dalton's Law of Partial Pressure
	Unstable Nuclei and radioactive Decay
	Radioactivity
	Types of radiation
	- Alpha Radiation
	- Beta Radiation
	- Gamma Radiation
	- Nuclear Stability
	Nuclear Radiation
	Discovery of radioactivity
	• Types of radiation

- Alpha
- Beta
- Gamma
Radioactive Decay
Nuclear Stability
Types of Radioactive Decay
- Alpha
- Beta
- Gamma
- Positron Emission
- Electron Capture
 writing and balancing nuclear equations
Radioactive Series
Transmutation
• induced transmutation
radioactive decay rates
radioactive dating
Fission and Fusion
• nuclear reactions and energy

 nuclear fission nuclear reactor nuclear fusion Applications and effects of Nuclear Reactions 	
 detecting radioactivity uses of radiation biological effects of radiation 	

Indicator 3: Analyze interactions of energy and matter.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Application)	9-12.P.3.1. Students are able to describe the relationships among potential energy, kinetic energy, and work as applied to the Law of	States of Matter - Kinetic Theory - Thermal Energy - Average Kinetic Energy		Chapter 16

Conservation of Energy.	Thermal Expansion	
• Describe how	Solid or Liquid?	
energy can be transformed and	- Amorphous Solid vs. Liquid	
transformed to	Crystals	
produce useful	How thermal energy affects matter	
work.	Properties of fluids	
Examples:	- Archimede's Principle	
Diagram simple	- Pascal's Principle	
describing the objects and the forms of energy gained and lost.	- Bernoulli's Principle	
Use simple machines as an example of the transmission of energy.		
• Given the formulas, calculate the mechanical advantage and efficiency of selected systems.		
• Explain methods of heat transfer.		
Examples:		

conductio		
n,		
radiation,		
and		
convectio		
n		
		1

	Physical Science
	Performance Descriptors
	High school students performing at the advanced level:
	• predict the type of bonds formed as elements combine;
	 balance chemical equations involving polyatomic ions;
Advanced	• analyze and solve a problem involving velocity, acceleration, force, work, energy, or power;
	• construct or design a model that illustrates the Law of Conservation of Energy to show energy changes
	from potential to kinetic in doing work;
	• describe electrical effects in terms of motion and concentrations of charged particles.
	High school students performing at the proficient level:
	 use the Periodic Table to determine the properties of elements and the ways they combine;
	• given a variable, predict whether reactions will speed up or slow down as conditions change;
	• balance simple chemical equations;
	• describe chemical, physical, and nuclear changes at the atomic and macroscopic levels;
Proficient	• calculate velocity, acceleration, force, work, energy, and power given the formulas;
	 given the forces acting on an object, predict its motion using Newton's Laws;
	apply the Law of Conservation of energy to show energy changes from potential to kinetic in doing
	work;
	 describe how characteristics of waves are related to one another;
	 describe electrical effects in terms of motion and concentrations of charged particles.
	High school students performing at the basic level:
	• use the Periodic Table to determine the properties of the 1 st 18 elements;
	 provide the coefficients for an unbalanced synthesis or decomposition equation;
Basia	 identify chemical and physical changes at the macroscopic level;
Dasie	• calculate velocity and force given the formulas;
	• given an example, identify which of Newton's Laws is illustrated;
	• identify the characteristics of waves;
	• identify electricity as movement of charged particles.

Core High School Nature of Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1:	Understand	the nature and	origin of	scientific	knowledge.
--------------	------------	----------------	-----------	------------	------------

Bloom's		Supporting Skills	Assessments	Resources
Taxonomy	Standard			
Level				
	9-12.N.1.1. Students are able	Scientific Research		Chapter 1 & 2
	to evaluate a scientific	• Types of Investigations		
	discovery to determine and			
	describe how societal,	 pure research vs. 		
	cultural, and personal beliefs	applied research		
	influence scientific	Examples: telescope, birth control		
	investigations and	pill penicillin electricity		
	interpretations.			
		Recognize scientific		
(Evaluation)		knowledge is not merely a set		
(Evaluation)		of static facts but is dynamic		
		and affords the best current		
		explanations.		
		Examples: spontaneous		
		generation, relativity.		
		geologic time		
		Discuss how progress in		
		science can be affected by		
		social issues.		

Indicator 2: Apply the skills necessary to conduct scientific investigations.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
Level (Synthesis)	 9-12.N.2.1. Students are able to apply science process skills to design and conduct student investigations. Identify the questions and concepts to guide the development of hypotheses. Analyze primary sources of information to guide the development of the procedure. Select and use appropriate instruments to extend observations and measurements. 	Scientific Method Systematic Approach observation (qualitative vs. quantitative) hypothesis experiments (independent vs. dependent variable vs. control) conclusion representing data graphs bar vs. circle vs. line		Chapter 1 & 2
	 Revise explanations and models based on evidence and logic. Use technology and 	line graphsinterpreting graphsinvestigation		
	mathematic skills to	- Density (accuracy vs.		

	enhance investigations, communicate results, and defend conclusions.	precision) - open-ended density	
	Examples:		
	Computer-based data collection		
	Graphical analysis and representation		
	Use appropriate technology to display data (i.e. spreadsheets, PowerPoint, web).		
	9-12.N.2.2. Students are able to practice safe and effective laboratory techniques.	Lab safety	Chapter 1 & 2
(Application)	• Handle hazardous materials properly.		
	• Use safety equipment correctly.		
	• Practice emergency procedure.		
	• Wear appropriate attire.		

Practice safe		
behaviors.		

Core High School Nature of Science

Performance Descriptors				
	High school students performing at the advanced level:			
Advanced	• given a scientific discovery, evaluate how different societal, cultural, and personal beliefs influenced			
Auvanceu	the investigation and its interpretation;			
	• design and conduct an investigation using an alternative student- developed hypothesis.			
	High school students performing at the proficient level:			
	• given a scientific discovery narrative, determine and describe how societal, cultural, and personal			
Proficient	beliefs influenced the investigation and its interpretation;			
	• describe the role of observation and evidence in the development and modification of hypotheses,			
	theories, and laws; then apply science process skills to design and conduct student investigations.			
	High school students performing at the basic level:			
	• describe the role of observation in the development of hypotheses, theories, and laws and conduct			
Basic	student investigations;			
	• given a scientific discovery narrative, identify the cultural and personal beliefs that influenced the			
	investigation.			

Core High School Science, Technology, Environment, and Society Standards, Supporting Skills, and Examples

Indicator 1: Analyze various implications/effects of scientific advancement within the environment and society.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Application)	 9-12.S.1.1. Students are able to explain ethical roles and responsibilities of scientists and scientific research. Examples: Sharing of data Accuracy of data Acknowledgement of sources Following laws Animal research Human research Managing hazardous materials and wastes 	Units of Measurement SI units Base units Derived units density temperature Kelvin vs. Celsius Scientific Notation Addition/subtraction with scientific notation Multiplication/division with scientific notation dimensional analysis reliability of measurements 		Chapter 1
		• precision vs. Accuracy		

		percent errorsignificant figuresrounding numbers	
	9-12.S.1.2. Students are able to evaluate and describe the impact of scientific discoveries on historical events and social, economic, and ethical issues.		
(Evaluation)	Examples : cloning, stem cells, gene splicing, nuclear power, patenting new life forms, emerging diseases, AIDS, resistant forms of bacteria, biological and chemical weapons, global warming, and alternative fuels		

T 1 / A /		1 4 1 1 /		•	4 1 1	•	1 • 4
Indicator 2: A	Analyze the i	relationshins/i	nteractions	among science.	technology.	environment.	and society.
indicator Z , 1	inary 20 the i	ciucionsinpo, i	meet actions	uniong science,	commonogy,	chi i i onnicht,	and society.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Evaluation)	9-12.S.2.1. Students are able to describe immediate and	Benefits of Chemistry Examples: environmental,		Chapter 1 & 2

	long-term consequences of potential solutions for technological issues.	 communication, internet, entertainment, construction, manufacturing, power and transportation, energy sources, health technology, and biotechnology issues Describe how the pertinent technological system operates. 	
		Example: waste management facility	
	9-12.S.2.2. Students are able to analyze factors that could limit technological design.		
(Analysis)	Examples : ethics, environmental impact, manufacturing processes, operation, maintenance, replacement, disposal, and liability		
(Synthesis)	9-12.S.2.3. Students are able to analyze and describe the benefits, limitations, cost, and consequences involved in using, conserving, or recycling resources.	Examples: mining, agriculture, medicine, school science labs, forestry, energy, disposable diapers, computers, tires	

Core High School Science Technology, Environment, and Society				
Performance Descriptors				
	High school students performing at the advanced level:			
Advanced	 modify a technology taking into consideration limiting factors of design; 			
	• given a narrative of a scientific discovery, defend a position on the impact of the ethical issues.			
	High school students performing at the proficient level:			
	• given a narrative of a scientific discovery, identify and evaluate the immediate and long-term			
	consequences of scientific issues;			
Proficient	• identify and explain ethical roles and responsibilities of scientists conducting a given research project.;			
	 evaluate factors that could limit technological design; 			
	• given a narrative description of a resource, analyze and describe the benefits, limitations, cost, and			
	consequences involved in its use, conservation, or recycling.			
	High school students performing at the basic level:			
	• given a narrative of a scientific discovery, identify the immediate consequences of scientific issues;			
Basic	 identify ethical roles and responsibilities concerning a given research project; 			
	• identify factors that could limit technological design;			
	• given a narrative description of a resource, describe a benefit and limitation involved in its use,			
	conservation, or recycling.			