Biology – (second semester) High School Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Analyze the various structures and processes of the Earth system.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Comprehension)	 9-12.E.1.1. Students are able to explain how elements and compounds cycle between living and non- living systems. Diagram and describe the N, C, O and H₂O cycles. Describe the importance of the N, C, O and H₂O cycles to life on this planet. Examples: water cycle including evaporation, cloud formation, condensation. 	 Illustrate and describe the N, C, O and H₂O cycles. Describe the importance of the N, C, O and H₂O cycles to life on this planet. Examples: water cycle including evaporation, cloud formation, condensation. 		Biology text Chapter 2 (intro) Biology text Chapter 3

(Application)	9-12.E.1.2. Students are able to describe how atmospheric chemistry may affect global climate.	• Use information to explain ozone depletion, global warming, acid rain, and the dead zone in the Gulf of Mexico from fertilizer runoff	Biology text Chapter 6
	Examples : Greenhouse Effect, ozone depletion, ocean's effects on weather		
(Analysis)	 9-12.E.1.3. Students are able to assess how human activity has changed the land, ocean, and atmosphere of Earth. Examples: forest cover, chemical usage, farming, urban sprawl, grazing 	• Explain role of human impact on ozone depletion, global warming, acid rain, the dead zone in the Gulf of Mexico from fertilizer runoff, deforestation, desertification, conservation of resources, modern farming practices including use of technology, alternative energy sources	Biology text Chapter 6
(Evaluation)	9-12.S.1.2. Students are able to evaluate and describe the impact of scientific discoveries on historical events and social, economic, and ethical issues. Examples:	 Decide personal views on topics discussed during class and determine subjectivity of sources presented 	Biology text Chapter 6

Greenhouse Effect, ozone depletion, forest depletion		

Core High School Earth/Space Science Performance Descriptors

Terrormance Descriptors				
	High school students performing at the advanced level:			
Advanced	• predict the effect of an interruption in a given cycles;			
	• predict how human activity may change the land, ocean, and atmosphere of Earth.			
	High school students performing at the proficient level:			
Proficient	• explain how H ₂ 0, N, C, and O cycle between living and non-living systems;			
Proficient	 describe how various factors may affect global climate; 			
	• explain how human activity changes the land, ocean, and atmosphere of Earth.			
High school students performing at the basic level:				
	• given pictorial representations of the H ₂ 0 and C cycles, explain how elements and compounds			
Basic	move between living and nonliving systems;			
	• describe one factor that may affect global climate;			
	• give an example of human activity that changes the land, ocean, or atmosphere of Earth.			

Advanced High School Earth/Space Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Analyze the various structures and processes of the Earth system.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Application)	9-12.E.1.1A. Students are able to explain how elements and compounds cycle between living and non-living systems.	• Illustrate the P cycle		Biology text Chapter 3
	• Diagram and describe the P, S, and Ca cycles.			

a g g t	D-12.E.1.2A. Students are able to compare, quantitatively and qualitatively, methods used to determine geological ime.	 describe how fossils form compare the methods used to determine the geologic time scale including relative dating, index fossils, radioactive C₁₄ dating 	Biology text Chapter 17
(Analysis)	 Examples: fossil record, radioactive decay, tree rings, geologic stratification, South Dakota geology Construct a geologic time scale over the past 4.8 billion years. 	 analyze evidence found in fossil records to describe how populations change over time Construct a geologic time scale over the past 4.8 billion years 	

Core High School Nature of Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Understand the nature and origin of scientific knowledge.

Bloom's	Standard	Supporting Skills	Assessment	Resources
Taxonomy	Standard			
Level				
	9-12.N.1.1. Students	Recognize scientific		Biology text Chapter 15, & 16
(Evaluation)	are able to evaluate a	knowledge is not		www.pbs.org/wgbh/evolution/educators/teachstuds/svideos.html
	scientific discovery to	merely a set of static		
	determine and	facts but a dynamic		
	describe how societal,	and affords the best		
	cultural, and	current explanations		

	personal beliefsinfluence scientificinvestigations andinterpretations.Examples:telescope, birthcontrol pill,penicillin,electricityExamples:spontaneousgeneration,relativity,geologic time	• Discuss how progress in science can be affected by social issues, like overuse of antibiotics leading to antibiotic resistant strains of tuberculosis bacteria, societal pressure leading to Darwin's reluctance to publish Theory of Evolution	
(Synthesis)	9-12.N.1.2. Students are able to describe the role of observation and evidence in the development and modification of hypotheses, theories, and laws. (pseudo-science).	 Propose scientific hypotheses Predict outcome of experiments Generalize from data gathered in experiments Draw conclusions from data gathered and analyzed during experiments 	Biology text and Labs:Photosynthesis Lab (Chapter 8)Exercise Physiology Lab (Chapter 9)Good Buddies Activity (Chapter 3)How Many Bears Activity (Chapter 3)Lima Bean Lab (Chapter 15)Canary Island Lizards Lab (Chapter 16)Dichotomous Keying Labs (Chapter 18)

Indicator 2: Apply the skills necessary to conduct scientific investigations.	

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Synthesis)	9-12.N.2.1. Students are able to apply science process skills to design and conduct student investigations. Examples: Computer-based data collection	 Identify the questions and concepts to guide the development of hypotheses. Analyze primary sources of information to guide the development of the procedure. Select and use appropriate instruments to extend observations 		Biology text and Labs: Photosynthesis Lab (Chapter 8) Exercise Physiology Lab (Chapter

Graphical analysis and representation Use appropriate technology to display data (i.e. spreadsheets, PowerPoint, web).	 and measurements Revise explanations and models based on evidence and logic. Use technology and mathematic skills to enhance investigations, communicate results, and defend conclusions. 	9) Good Buddies Activity (Chapter 3) How Many Bears Activity (Chapter 3)
	 conclusions. Example: computer-based data collection graphical analysis and representation use appropriate technology to display data 	(Chapter 3) Lima Bean Lab (Chapter 15) Canary Island Lizards Lab (Chapter 16)
	 spreadsheets PowerPoint Web 	Dichotomous Keying Labs (Chapter 18) Lab Simulations Biodetectives

	9-12.N.2.2. Students are able to practice safe and effective laboratory techniques.	 Handle hazardous materials properly. Use safety equipment correctly. 	Labwork
(Application)		Practice emergency procedure.	
		Wear appropriate attire.Practice safe behaviors.	

Core High School Nature of Science
Performance Descriptors

i chroninance 2 comptons			
	High school students performing at the advanced level:		
Advanced	• given a scientific discovery, evaluate how different societal, cultural, and personal beliefs influenced		
Auvanceu	the investigation and its interpretation;		
	• design and conduct an investigation using an alternative student- developed hypothesis.		
Ducticiant	High school students performing at the proficient level:		
Proficient	• given a scientific discovery narrative, determine and describe how societal, cultural, and personal		

	 beliefs influenced the investigation and its interpretation; describe the role of observation and evidence in the development and modification of hypotheses, theories, and laws; then apply science process skills to design and conduct student investigations.
Basic	 High school students performing at the basic level: describe the role of observation in the development of hypotheses, theories, and laws and conduct student investigations; given a scientific discovery narrative, identify the cultural and personal beliefs that influenced the investigation.

Core High School Physical Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Describe structures and properties of, and changes in, matter

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Comprehen sion)	 9-12.P.1.2. Students are able to describe ways that atoms combine. Name and write formulas for binary ionic and covalent compounds. Example: sodium chloride (NaCl), carbon dioxide (CO₂) Compare the roles of electrons in covalent, ionic, and metallic bonding. Discuss the special nature of carbon covalent bonds. 	 Name and write formulas for binary ionic and covalent compounds. Example: sodium chloride (NaCl), carbon dioxide (CO₂) 		Biology Text (Chapter 8, 9, & 3)

(Application)	9-12.P.1.3. Students are able to predict whether reactions will speed up or slow down as conditions change. Examples: temperature, concentration, surface	• Use information to and experiment to discover factors that affect rate of photosynthesis	Biology text (Chapter 8) Lab simulation
(Application)	area, and catalysts 9-12.P.1.4. Students are able to balance chemical equations by applying the Law of Conservation of Matter. • Trace number of particles in diagrams and pictures of balanced equations. Example: Write out an equation with symbols: $Mg + 2HCL \rightarrow$ $MgCl_2 + 2H_2$	 Trace number of particles in diagrams and pictures of balanced equations. Example: Write out an equation with symbols: 	Biology text (Chapters 8 & 9)

	9-12.P.1.5. Students are able to distinguish among chemical, physical, and nuclear changes.	• Describe physical changes of water associated with the water cycle	Biology text (Chapter 3)
	• Differentiate between physical and chemical properties used to describe matter.		
	• Identify key indicators of chemical and physical changes.		
(Comprehen sion)	• Describe the effects of changing pressure, volume, or temperature upon gases.		
	• Identify characteristics of a solution and factors that affect the rate of solution formation.		
	• Explain the differences among nuclear, chemical, and physical		

changes at the atomic level.		
Examples: solute, solvent, concentrated, dilute, saturated, unsaturated, supersaturated		
Factors affecting rate: agitation, heating, particle size, pictures of particles		

Core High School Physical Science Performance Descriptors						
	High school students performing at the advanced level:					
	• predict the type of bonds formed as elements combine;					
Advanced	 balance chemical equations involving polyatomic ions; 					
	• describe electrical effects in terms of motion and concentrations of charged particles.					
	High school students performing at the proficient level:					
	• use the Periodic Table to determine the properties of elements and the ways they combine;					
	• given a variable, predict whether reactions will speed up or slow down as conditions change;					
Proficient	• balance simple chemical equations;					
	• describe chemical, physical, and nuclear changes at the atomic and macroscopic levels;					
	• calculate velocity, acceleration, force, work, energy, and power given the formulas;					
	 describe electrical effects in terms of motion and concentrations of charged particles. 					
	High school students performing at the basic level:					
	• use the Periodic Table to determine the properties of the 1 st 18 elements;					
Basic	 provide the coefficients for an unbalanced synthesis or decomposition equation; 					
	• identify chemical and physical changes at the macroscopic level;					
	• identify electricity as movement of charged particles.					

Core High School Life Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Understand the fundamental structures, functions, classifications, and mechanisms found in living things.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	R
(Analysis)	 9-12.L.1.1. Students are able to relate cellular functions and processes to specialized structures within cells. Transport Transport Examples: cell membrane, homeostasis Photosynthesis and respiration Examples: ATP-ADP energy cycle Role of enzymes Mitochondria Chloroplasts Storage and transfer of genetic information Examples: replication, transcription, and 	 Explain the role of transport in photosynthesis and respiration Examples: photosynthesis and cellular respiration Put in sequence the biochemical pathways involved in photosynthesis and respiration Relate structure of mitochondrion to cellular respiration and structure of chloroplast to photosynthesis Examples: ATP-ADP energy cycle Role of enzymes Mitochondria Chloroplasts 		Bid (C &

	translation		
	• Cell life cycles		
	Examples: somatic cells (mitosis), germ cells (meiosis)		
	9-12.L.1.2. Students are able	• Understand why living things are organized for study	Bi (C
	to classify organisms using characteristics and evolutionary relationship of major taxa.	• Explain how bionomial nomenclature is used to name organisms (genus, species)	18
	Kingdoms	• Describe Linnaeus's system of classification (Kingdom, Phylum,	
	Examples: animals, plants, fungi, protista, monera • Phyla	 class, family) Analyze characteristics used to classify organisms including phylogeny, derived characters, similarities in DNA and RNA, molecular clocks 	
(Application)	Examples: invertebrates, vertebrates,	• Analyze taxonomic groupings and major characteristics of the five Kingdoms	
	divisions of plants Note: There is an ongoing scientific debate about the	• Compare and contrast life functions of monerans, protests, fungi, plants, animals including humans	
	number of groupings and which organisms should be included in each.	• Classify organisms using characteristics and evolutionary Relationships of domains (eubacteria, archaebacteria, eukaryotes)	
		Classify organisms using a dichotomous key (PROFICIENT)	

	9-12.L.1.3. Students are able to identify structures and function relationships within major taxa. Examples:	• Compare and contrast life functions of monerans, protests, fungi, plants, animals including humans	H (1
(Analysis)	Relate how the layers in a leaf support leaf function. Interaction of agonist and antagonist muscles to support bone movement		

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Synthesis)	 9-12.L.2.2. Students are able to describe how genetic recombination, mutations, and natural selection lead to adaptations, evolution, extinction, or the emergence of new species. Examples: behavioral adaptations, environmental pressures, allele variations, bio-diversity Use comparative anatomy to support evolutionary relationships. 	 Explain Darwin's observations of population variation Predict inheritance patterns using a sing allele Describe how genetic recombination, mutations, and natural selection lead to adaptations, evolution, extinction, or emergence of new species (Directional, stabilizing, disruptive selection, Genetic drift, Founder effect) Use comparative anatomy to support evolutionary relationships (homologous structures, embryology) Predict the impact of genetic changes in populations (mutation, natural selection, artificial selection, gene shuffling) predict the results of complex inheritance patterns involving multiple alleles and genes. (SYNTHESIS) 		Biology text (Chapter 6, 15, & 16)

Indicator 2: Analyze various patterns and products of natural and induced biological change.

Indicator 3: Analyze how organisms are linked to one another and the environment.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.L.3.1. Students are able to identify factors that can cause changes in stability of populations,	Define populations, communities, & ecosystems (COMPREHENSION)		Biology text (Chapter 3 & 4-2)
(Comprehension)	 Define populations, communities, and ecosystems. Define populations, communities, ecosystems, niches and symbiotic relationships. Predict the results of biotic and abiotic interactions. 	 Define niches and symbiotic Relationships (COMPREHENSION) Compare and contrast the community interactions in an ecosystem (predation, competition, food chains, commensalism, parasitism, mutualism) 		
	Examples: Responses to changing of the seasons	• Diagram and describe the importance of the N, C, O and H ₂ O cycles		
	Tolerances (temperature, weather, climate) Dormancy and migration	 Predict the effect of an interruption in a given cycle (ADVANCED) Predict the results of biotic and 		

Fluctuation in available resources (water, food, shelter) Human activity Biogeochemical cycles Energy flow Cooperation and competition in ecosystems Response to external stimuli	abiotic interactions (COMPREHENSION)		
--	---	--	--

Core High School Life Science	
Performance Descriptors	

Performance Descriptors				
	High school students performing at the advanced level:			
	• explain the steps of photophosphorylation and the Calvin Cycle;			
	• analyze chemical reaction and chemical processes involved in the Calvin Cycle and Krebs Cycle;			
	• predict the function of a given structure;			
Advanced	• predict the outcome of changes in the cell cycle;			
	• explain how protein production is regulated;			
	• predict how homeostasis is maintained within living systems;			
	• predict how traits are transmitted from parents to offspring;			
	construct an original dichotomous key.			

	High school students performing at the proficient level:
	• describe and give examples of chemical reactions required to sustain life (hydrolysis, dehydration synthesis, photosynthesis, cellular respiration, ADP/ATP, role of enzymes);
	 describe the relationship between structure and function (cells, tissues, organs, organ systems, and organisms);
	• compare and contrast the cell cycles in somatic and germ cells;
Proficient	• tell how DNA determines protein formation;
	• explain how homeostasis is maintained within living systems;
	• explain how traits are transmitted from parents to offspring;
	• predict the impact of genetic changes in populations (mutation, natural selection and artificial selection, adaptation/extinction);
	 predict how life systems respond to changes in the environment;
	 classify organisms using a dichotomous key.
	High school students performing at the basic level:
	 name chemical reactions required to sustain life (hydrolysis, dehydration synthesis, photosynthesis, cellular respiration, ADP/ATP, role of enzymes);
	 recognize that different structures perform different functions;
Basic	• describe the life cycle of somatic cells;
	• identify DNA as the structure that carries the genetic code;
	• define homeostasis;
	• identify that genetic traits can be transmitted from parents to offspring;
	• know the purpose of a dichotomous key.

Advanced High School Life Science Standards, Supporting Skills, and Examples

Indicator 1: Understand the fundamental structures, functions, classifications, and mechanisms found in living things.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resourc
(Synthesis)	9-12.L.1.1A. Students are able to explain the physical and chemical processes of photosynthesis and cell respiration and their importance to plant and animal life. Examples: photosystems, photophosphorylation, Calvin Cycle and Krebs Cycle	 Predict the effects of changes in photosynthesis and cellular respiration on plants and animals Examples: the effect of changes in light and temperature on a plant, the availability of glucose on the behavior of a person What if oxygen is not available for the Krebs Cycle Examples: photosystems, photophosphorylation, Calvin Cycle and Krebs Cycle 		Biology text (Chapter 8 &

(Analysis)	9-12.L.1.5A. Students are able to classify organisms using characteristics and evolutionary relationships of domains.	• Classify organisms using characteristics and evolutionary relationships of domains (eubacteria, archaebacteria, eukaryotes)	Biology text (Chapter 18
	Examples: eubacteria, archaebacteria, and eukaryotes		

Bloom's Taxonomy	Standard	Supporting Skills	Assessments	Resourc
Level (Synthesis)	 9-12.L.2.1A. Students are able to predict the results of complex inheritance patterns involving multiple alleles and genes. Examples: human skin color, polygenic inheritance Relate crossing over to genetic variation. Evaluate changes in gene frequencies in populations to see if Hardy-Weinberg equilibrium exists or evolution has occurred. 	 Predict the results of complex inheritance patterns involving polygenic traits Example: (Skin color) Evaluate changes in gene frequencies in populations to determine if Hardy- Weinberg equilibrium exists or evolution has occurred 		Biology Text (Chapter 15)

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.L.3.1A. Students are able to relate genetic, instinct, and behavior patterns to biodiversity	• relate genetic, instinct, and behavior patterns to biodiversity and survival of species. (SYNTHESIS)		Biology text (Chapter 6)
(Synthesis)	 and survival of species. Compare and contrast learned behavior vs instinct. Example: nature vs nurture Relate the introduction of nonnative species to the disruption of an ecosystem. Examples: Asian lady beetle, Asian carp, zebra mussels, Eurasian watermilfoil, salt cedar 	• Relate the introduction of non-native species to the disruption of an ecosystem (Asian lady beetle, Asian carp, zebra mussels, Eurasian watermilfoil, salt cedar)		

Indicator 3: Analyze how organisms are linked to one another and the environment.

Core High School Science, Technology, Environment, and Society Standards, Supporting Skills, Assessments, and Resources

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
Level (Evaluation)	 9-12.S.1.2. Students are able to evaluate and describe the impact of scientific discoveries on historical events and social, economic, and ethical issues. Examples: cloning, stem cells, gene splicing, nuclear power, patenting new life forms, emerging diseases, AIDS, resistant forms of bacteria, biological and chemical 	 Compare and contrast the use of alternative fuels on the environment compared to conventional fuels Make a decision regarding the use of antibiotics and their contribution to the emergence of resistant strains. 		Biology text (Chapter 15) Ethics Unit A Inconvenient Truth Too Hot Not To Handle
	weapons, global warming, and alternative fuels			

(Evaluation)	 9-12.NC.1.1. Compare and contrast how societal changes mirror innovations and emerging technologies. Example: Effect of emerging technology on future legal issues. 	• Evaluate effectiveness of current laws in issues relating to emerging technologies (stem cell research, alternative energies, antibiotic resistance)	Biology text Chapter 15 Ethics Unit A Inconvenient Truth Too Hot Not To Handle
(Evaluation)	9-12.NC.1.2. Predict how the evolution of technology will influence the design and development of future technology.	Assess the impact of a developing technology on future technology (development of antibiotics influences development of future antibiotics, nuclear power development causes development of waste technology)	Biology text Chapter 16 Ethics Unit A Inconvenient Truth Too Hot Not To Handle
(Analysis)	9-12.NC.2.1. Analyze technology systems to make informed choices.	Analyze cloning and stem cell procedures to make informed personal choices	Ethics Unit

(Analysis)	9-12.NC.3.1. Analyze intended and unintended impacts of a system.	 Connect intended use of embryos in in vitro fertilization with the unintended use in stem cell research Connect the development of antibiotics with the unintended consequence of the development of antibiotic resistant strains 	Ethics Unit
------------	---	--	-------------

Core High School Science Technology, Environment, and Society Performance Descriptors

I error mance Descriptors		
High school students performing at the advanced level:		
Advanced	 modify a technology taking into consideration limiting factors of design; 	
	• given a narrative of a scientific discovery, defend a position on the impact of the ethical issues.	
	High school students performing at the proficient level:	
	• given a narrative of a scientific discovery, identify and evaluate the immediate and long-term	
	consequences of scientific issues;	
Proficient	• identify and explain ethical roles and responsibilities of scientists conducting a given research project.;	
Proficient	• evaluate factors that could limit technological design;	
	• given a narrative description of a resource, analyze and describe the benefits, limitations, cost, and	
	• consequences involved in its use, conservation, or recycling.	

 Basic identify factors that could limit technological design; given a narrative description of a resource, describe a benefit and limitation involved in its use, conservation, or recycling.

Core High School Nature, Concepts and Systems Performance Descriptors		
	High school students performing at the advanced level:	
Advanced	• predict how the evolution of technology will influence the development of future technology	
	• evaluate an example of an intended and unintended impact in a change system	
	High school students performing at the proficient level:	
Proficient	 compare and contrast how an emerging technology changes society 	
	• analyze an example of an intended and unintended impact in a system	
Basic	High school students performing at the basic level:	
	• identify an example of an intended and unintended impact in a system	

Consultion School Nations, Concentrational Systems Deutermones Descriptions