Advanced Placement Chemistry (one year) High School Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Describe structures and properties of, and changes in, matter.

Bloom's Taxonomy	Standard	Supporting Skills	Assessments	Resources
Level				
(Analysis)	9-12.P.1.1A. Students are able to distinguish between the changing models of the atom using the historical experimental evidence. Examples: Dalton, Thompson, Rutherford, Bohr, wave- mechanical models	 Unit 2: Atoms, Molecules, and Ions Early History of chemistry Fundamental of chemical Laws Dalton's Atomic Law Early experiments to characterize the atom Modern view of atomic structure 	Homework Exams/quizzes Labs Activities	Chemistry, Steven S. Zumdahl Chapter 2 1.5 weeks
(Synthesis)	9-12.P.1.2A. Students are able to predict electron configuration, ion formation, reactivity, compound formation, periodic trends, and types of compounds formed based on location on the Periodic Table.	Unit 6: Atomic Structure Periodicity Electromagnetic Radiation Nature of Matter Atomic Spectra Bohr's Model Quantum Model Quantum Numbers Orbital shapes and Energies Electron Spin and Pauli Exclusion Principle History of Periodic Table Periodic and group trends Atomic size, ionic size, electronegativity, electron affinity, ionization energies, oxidation states <u>Experiment</u> Flame test for metals 	Homework Exams/quizzes Labs Activities	Chemistry, Steven S. Zumdahl Chapter 7 2 weeks

(Synthesis)	9-12.P.1.3A. Students are able to identify five basic types of chemical reactions and predict the products.	 Unit 3: Stoichiometry Review of chem math Balancing Chem Equation Emphasis predicting/writing complete net ionic equation Review Stoichiometric calculations from adv chem Unit 13: Acid and Bases Strong vs. Weak Acid/base: pH, pOH, [OH'], [H⁺] Reactions of salts in water Reactions of acid/bse in water (titration) Acid/base titration curves, pH at endpoint, acid/base theories Ka, Kb, and determination from pH and % dissociation Determination of [H⁺], pH for weak acid with/without quadratic formula Polyprotic acid analysis Buffer problem Weak base/acid ionization Acid/base indicator principles Rules for multiple equilbria 	Homework Exams/quizzes Labs <u>UNIT 3 Experiments</u> *Empirical formula of copper iodide *Synthesis of aspirin *Net ionic reactions using microscale <u>UNIT 14 Experiments</u> *Titration of a solid acid to find its molecular weight *Titration of diprotic acid Activities	Chemistry, Steven S. Zumdahl Chapter 3 and 4 2.5 weeks Chemistry, Steven S. Zumdahl Chapter 14 and 15 2.5 weeks
		Acid/base indicator principles		

(Synthesis)	9-12.P.1.4A. Students are able to describe factors that affect solution interactions.	 Unit 9: Solutions Types of solutions and factors affecting solubility Henry's Law Methods of expressing concentration (The use of normalities is not tested.) Raoult's law and colligative properties (nonvolatile solutes); osmosis Non-ideal behavior (qualitative aspects) 	Homework Exams/quizzes Labs <u>UNIT 9 Experiment</u> Molecular Mass detemination by freezing point depression Activities	Chemistry, Steven S. Zumdahl Chapter 11 2.0 weeks
(Application)	9-12.P.1.5A. Students are able to examine energy transfer as matter changes. Examples:	 Unit 5: Thermochemistry Nature of Energy Enthalpy and Calorimetry Hess's Law Standard Enthalpies of Formation Bond Energies Heats of Reactions Unit 10: Chemical Thermodynamics State functions Review 1^{SI} law: enthalpy; heat of formation; heat of reaction; Hess's law; heats of vaporization/fusion; calorimetry 2ND law: entropy; free energy of formation; free energy of reaction; dependence energy on enthalpy and entropy changes Relationship of change in free energy to equilibrium constants and electrode potentials 	Homework Exams/quizzes Labs <u>UNIT 5 Experiment</u> Calorimetry Activities	Chemistry, Steven S. Zumdahl Chapter 6 2.0 weeks Chemistry, Steven S. Zumdahl Chapter 16 2.5 weeks

(Application)	9-12.P.1.6A. Students are able to perform stoichiometric calculations.	 Unit 1: Calculateions and uncertainty Nature of science and scientific method Experiment design Data measurement and manipulation <i>Review exponential notation, SI units, dimensional analysis, graphing, and algebraic operations.</i> Uncertainty in Measurements <i>Learn about the measurements chemists make in the laboratory and how to express the accuracy and precision of these measurements.</i> Significant Figures and calculations Lab safety and techniques Homework Exams/quizzes Labs UNIT 1 Experiments *Safety in lab *How to use a balance *How to use equipment UNIT 3 Experiments *Empirical formula of copper iodide *Synthesis of aspirin *Net ionic reactions using microscale 	Chemistry, Steven S. Zumdahl Chapter 1 1.0 weeks
		 Unit 3: Stoichiometry Review of chem math from adv chem Mole, molar mass , percent composition, determining empirical/molecular formula Review Balancing Chemical Equations Emphasis on predicting and writing complete net ionic equation 	Chemistry, Steven S. Zumdahl Chapter 3 and 4 2.5 weeks

	 Review Stoichiometric calculations from adv chem Emphasis on limiting/excessive reactant problems and percent yield 		Chamiata
9-12.P.1.7A. Students are able to apply the kinetic molecular theory to solve quantitative problems involving pressure, volume, temperature, and number of moles of gas. (Application)	 Unit 4: Gases Pressure Gas Laws Charles, Boyles, Gay-Lussac, Avogadro Gas Stoichiometry Dalton's Law of partial Pressure Laws of ideal gases Equation of state for an ideal gas Kinetic-molecular theory Interpretation of ideal gas laws on the basis of this theory the Dependence of kinetic energy of molecules on temperature Deviations from ideal gas laws Diffusion vs. Effusion Real vs. Ideal gases 	Homework Exams/quizzes Labs UNIT 4 Experiment Molecular Mass of a volatile liquid Activities	Chemistry, Steven S. Zumdahl Chapter 5 2.0 weeks

(Synthesis)	9-12.P.1.8A. Students are able to use models to make predictions about molecular structure, chemical bonds, chemical reactivity, and polarity of molecules.	 Binding forces Types: ionic, covalent, metallic, hydrogen bonding, van der Waals Relationships to states, structure, and properties of matter Polarity of bonds, electronegativities Molecular models Lewis structures, VSEPR Valence bond: hybridization of orbitals, resonance, sigma and pi bonds Geometry of molecules and ions, structural isomerism of simple organic molecules and coordination complexes; dipole moments of molecules; relation of properties to structure Nuclear chemistry: nuclear equations, half-lives, and radioactivity; chemical applications 	Homework Exams/quizzes Labs UNIT 7 Experiment VSEPR model building Activities	Chemistry, Steven S. Zumdahl Chapter 8 and 9 3.0 weeks
(Analysis)	9-12.P.1.9A. Students are able to describe the characteristics of equilibria.	 Concept of dynamic equilibrium, physical and chemical Le Chatelier's principle Equilibrium constants for gaseous reactions: <i>Kp</i>, <i>Kc</i> 	Homework Exams/quizzes Labs <u>UNIT 12 Experiment</u> Determination of the equilibrium constant	Chemistry, Steven S. Zumdahl Chapter 13 2.0 weeks

	 Constants for acids and bases; pK; pH Law of Mass Action Solubility product constants and their application to precipitation and the dissolution of slightly soluble compounds Common ion effect Buffers Calculation of pH, effects of adding limiting amount of strong acid/base Hydrolysis 	
--	--	--

Indicator 2: Analyze forces, their forms, and their effects on motions.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Synthesis)	9-12.P.2.1A. Students are able to solve vector problems graphically and analytically.			
(Analysis)	9-12.P.2.2A. Students are able to relate gravitational or centripetal force to projectile or uniform circular motion.			

Indicator 3: Analyze interactions of energy and matter.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Synthesis)	9-12.P.3.1A. Students are able to explain wave behavior in the fundamental processes of reflection, refraction, diffraction, interference, resonance, and image formation.			
(Application)	9-12.P.3.2A. Students are able to describe the relationship between charged particles, static electricity, and electric fields.			
(Analysis)	9-12.P.3.3A. Students are able to describe the relationship between changing magnetic and electric fields.			

Additional Concepts to Cover

Blooms Taxonomy Level	Standard/Objective	Supporting Skills	Assessments	Resources
		 Unit 8: Liquids and Solids Liquids and solids from the kinetic-molecular viewpoint Phase diagrams of one-component systems Clausius-Clapeyron Equation Changes of state, including critical points and triple points Structure of solids; lattice energies Crystal Structures (simple cubic, face-centered cubic, body-centered cubic) Types of solids, metallic bonding, network solids, amorphous 	Homework Exams/quizzes Labs Activities	Chemistry, Steven S. Zumdahl Chapter 10 1.5 weeks
		 Unit 11: Kinetics Concept of rate of reaction Use of experimental data and graphical analysis to determine reactant order, rate constants, and reaction rate laws Effect of temp change on rates Energy of activation; the role of catalysts The relationship between the rate-determining step and a mechanism 	Homework Exams/quizzes Labs <u>UNIT 11Experiment</u> Kinetics of thiosulfate decomposition Activities	Chemistry, Steven S. Zumdahl Chapter 12 2.5 weeks

 Unit 14: Electochemistry Oxidation/reduction half-cells and equations Voltaic cells, EMF, Standard cell potentials of half reactions; cell potentials, electroltic cells, relationship to oxidation and reduction Cell potentials, spontaneity, equilibrium constants and free energy relationships EMF and concentration – Nernst Equation Electrolysis reaction and Faraday's law of electrolysis 	Homework Exams/quizzes Labs <u>UNIT 14 Experiments</u> *Electrolysis of water * Identifying electrodes *Writing half reaction Activities	Chemistry, Steven S. Zumdahl Chapter 17 1.5 weeks
 Unit 15: Nuclear Chemistry Nuclear equations Half lives Nuclear particle emission Fission vs. fusion Nuclear reactors 	Homework Exams/quizzes Labs Activities	Chemistry, Steven S. Zumdahl Chapter 18 0.5 weeks