Physical Science - Chemistry (one semester) High School Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Describe structures and properties of, and changes in, matter

Bloom's Taxonomy Stand Level	lard	Supporting Skills	Assessments	Resources
9-12.P.1.1. Stu able to use the Table to detern atomic structu elements, valen family relation regions (metal and metalloids (Analysis)	dents are Pr Periodic Pe mine the re of nce number, aships, and s, nonmetals, i). Id ch its St	 Properties of Atoms and the eriodic Table Determine protons, neutrons, electrons, mass number, and atomic number from the Periodic Table. Determine the number of valence electrons for elements in the main (s&p) blocks of the Periodic Table. Ientify the relative metallic naracter of an element based on s location on the Periodic Table. Furucture of the Atom Scientific Shorthand Atomic Components Quarks Models 		Chapter 17

	1	
Democritus		
Thomson		
• Rutherford		
• Bohr		
• Quantum (electron cloud)		
Masses of Atoms		
- Atomic Number		
- Mass Number		
Isotopes		
Organize the Elements		
- Mendeleev's Table		
- Moseley's Improvement of		
Periodic Table		
Atoms and the Periodic Table		
- Electron Cloud Structure		
- Energy Leels		
- Rows on the Table		
- Electorns Dot Diagrams		

	 Regions of the Periodic Table Groups (Families) Periods Metals, Nonmetals, Metalloids 	
	Elements in the Universe Radioactivity and Nuclear	Chapter 18
	Reactions Radioactivity	Ĩ
	- Nucleus	
	• Protons and Neutrons	
	• Strong Force	
	• Radioactivity	
	Elements and Their Properties Metals - Properties of Metals • Ionic Bonding	Chapter 19

Non Metals	
- Properties of Nonmetals	
- Hydrogen	
- Halogen	
- Noble Gasses	
Mixed Groups	
- Metalloids	
- Boron Group	
- Carbon Group	
Allotropes of Carbon	
- Nitrogen Group	
- Oxygen Group	
- Synthetic Elements	
Transuranium elements	
• Why make them?	
• Seeking Stability	

	9-12.P.1.2. Students are	Metals	Chapter 19
	able to describe ways that	- Metallic Bonding	
	• Name and write	Alkali Metals	
	formulas for binary	Alkaline Earth Metals	
	ionic and covalent	Transition Elements	
	Example: sodium	Inner Transition Elements	
	chloride (NaCl),	Lanthanides	
	carbon dioxide (CO ₂)	• Actinides	
	• Compare the roles of	Metals in the Crust	
(Comprehension)	electrons in covalent, ionic, and metallic bonding.	• Ores: minerals and mixtures	
(comprenension)	• Discuss the special	Stability in Bonding	Chapter 20
	nature of carbon covalent bonds.	Combined Elements	
		- compounds	
		- new properties	
		Formulas	
		Atomic Stability	
		- Unique Noble Gases	
		- Chemical Stability	
		- Energy Levels and other elements	
		- Outer Levels – Getting their	

	fill	
	- Stability is reached	
	Types of bonds	
	- Gain or loss of electorns	
	- Ionic Bond	
	• Zero Net Charge	
	- Sharing Electrons	
	• Single Covalent Bond	
	• Multiple Bonds	
	• Unequal Sharing	
	• Tug-of-War	
	• Nonpolar vs. Polar	
	Writing Formulas and Naming Compounds	
	- Binary Ionic compounds	
	• are electrons gained or lost?	
	Oxidation Numbers	
	• Compounds are Neutral	
	• Writing Formulas	
	• Writing Names	

		 Compounds with Complex Ions Writing Names Writing Formulas Compounds with Added Water Common Hydrates Naming Binary Covalent Compounds Using Prefixes 	
(Application)	 9-12.P.1.3. Students are able to predict whether reactions will speed up or slow down as conditions change. Examples: temperature, concentration, surface area, and catalysts 	 Classifying Chemical Reactions Combustion Reaction Synthesis Reactions Decompositions Reactions Single Displacement Activity Series Double Displacement Oxidation-Reduction Reactions 	Chapter 21

		Chemical Reactions and Energy	
		- Exothermic	
		- Endothermic	
		- Catalyst vs. Inhibitors	
		Factors affecting the rate of reaction	
	9-12.P.1.4. Students are	Chemical Reactions	Chapter 21
	able to balance chemical	- Chemical Change	
	Law of Conservation of	• Describe chemical reactions	
	Matter.	• Conservation of mass	
(Application)	• Trace number of particles in diagrams and pictures of balanced equations.	Lavoisier's Contributions Father of Modern Chemistry Nomenclature	
	Example: Write out an equation with symbols: Mg + 2HCL → MgCl ₂ + 2H ₂	 Writing Equations Unit Managers * Metals and the atmosphere 	
(Comprehension)	9-12.P.1.5. Students are able to distinguish among chemical, physical, and nuclear changes.	Nature of Matter Composition of matter pure substances 	Chapter 15
	• Differentiate between physical and chemical properties	elements & compounds - Mixtures	

used to describe	Heterogeneous vs. Homogeneous	
matter.	Solutions, Colloid, Suspension	
• Identify key indicators of	• Rate of mixing	
chemical and physical changes.	- Properties of Matter	
• Describe the effects	Physical Properties	
of changing pressure,	-Appearance vs Behavior	
volume, or temperature upon	- Physical Change	
gases.	Identification	
• Identify	Separation	
characteristics of a solution and factors	- Chemical Properties	
that affect the rate of	- Chemical Changes	
solution formation.	- Conservation of Mass	
• Explain the differences among	Behaviors of Gases	Chapter 16
nuclear, chemical,	- pressure	
and physical changes	- Boyle's Law	
at the atomic level.	- Charles' Law	
Examples: solute, solvent,	Test the viscosity of common liquids	
concentrated, dilute,	Radioactivity	Chapter 18
saturated, unsaturated,	- isotopes	_
supersaturated	- Stable vs. Unstable	
Factors affecting		

heating, particle size, pictures of particles Discovery of Radioactivity Nuclear Decay . Nuclear Radiation . Alpha Particles . damage . smoke detectors . transmutation . Beta Particles . damage . Gamma Rays . Radioactive Half-Life . Radioactive Dating . uranium dating Detecting Radioactivity Pateting Radioactivity . Radiation Detectors . Cloud Chambers . Bubble Chambers . Electroscopes .	rate: agitation,	- Nucleus Numbers	
Nuclear Decay Nuclear Radiation Alpha Particles damage smoke detectors transmutation Beta Particles damage Gamma Rays Radioactive Half-Life Radioactive Dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation	heating, particle size,	Discovery of Radioactivity	
 Nuclear Radiation Alpha Particles damage smoke detectors transmutation Beta Particles damage Gamma Rays Radioactive Half-Life Radioactive Dating carbon dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 	pictures of particles	Nuclear Decay	
 Alpha Particles damage smoke detectors transmutation Beta Particles damage Gamma Rays Radioactive Half-Life Radioactive Dating carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		- Nuclear Radiation	
 damage smoke detectors transmutation Beta Particles damage Gamma Rays Radioactive Half-Life Radioactive Dating carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		- Alpha Particles	
 smoke detectors transmutation Beta Particles damage Gamma Rays Radioactive Half-Life Radioactive Dating carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		• damage	
 transmutation Beta Particles damage Gamma Rays Radioactive Half-Life Radioactive Dating carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		• smoke detectors	
 Beta Particles damage Gamma Rays Radioactive Half-Life Radioactive Dating carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		• transmutation	
 damage Gamma Rays Radioactive Half-Life Radioactive Dating carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		- Beta Particles	
 Gamma Rays Radioactive Half-Life Radioactive Dating carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		• damage	
 Radioactive Half-Life Radioactive Dating carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		- Gamma Rays	
 Radioactive Dating carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		- Radioactive Half-Life	
 carbon dating uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		- Radioactive Dating	
 uranium dating Detecting Radioactivity Radiation Detectors Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		• carbon dating	
Detecting Radioactivity - Radiation Detectors • Cloud Chambers • Bubble Chambers • Electroscopes • Measuring Radiation		• uranium dating	
- Radiation Detectors • Cloud Chambers • Bubble Chambers • Electroscopes - Measuring Radiation		Detecting Radioactivity	
 Cloud Chambers Bubble Chambers Electroscopes Measuring Radiation 		- Radiation Detectors	
Bubble Chambers Electroscopes Measuring Radiation		Cloud Chambers	
Electroscopes Measuring Radiation		Bubble Chambers	
- Measuring Radiation		• Electroscopes	
		- Measuring Radiation	

Geiger Counters
- Background Radiation
Sources of Background Radiation
Radiation in Your Body
Nuclear Reactions
- Nuclear Fission
Mass and energy
Chain reactions
- Nuclear Fusion
Temperature and fusion
Nuclear Fusion and the sun
- Nuclear Reactions in Medicine
• Iodine tracers in the thyroid
• Treating cancer with radioactivity

	Physical Science
	Performance Descriptors
	High school students performing at the advanced level:
	• predict the type of bonds formed as elements combine;
	 balance chemical equations involving polyatomic ions;
Advanced	• analyze and solve a problem involving velocity, acceleration, force, work, energy, or power;
	• construct or design a model that illustrates the Law of Conservation of Energy to show energy changes
	from potential to kinetic in doing work;
	• describe electrical effects in terms of motion and concentrations of charged particles.
	High school students performing at the proficient level:
	• use the Periodic Table to determine the properties of elements and the ways they combine;
	• given a variable, predict whether reactions will speed up or slow down as conditions change;
	• balance simple chemical equations;
	• describe chemical, physical, and nuclear changes at the atomic and macroscopic levels;
Proficient	• calculate velocity, acceleration, force, work, energy, and power given the formulas;
	• given the forces acting on an object, predict its motion using Newton's Laws;
	• apply the Law of Conservation of energy to show energy changes from potential to kinetic in doing
	work;
	 describe how characteristics of waves are related to one another;
	 describe electrical effects in terms of motion and concentrations of charged particles.
	High school students performing at the basic level:
	• use the Periodic Table to determine the properties of the 1 st 18 elements;
	 provide the coefficients for an unbalanced synthesis or decomposition equation;
Rasio	• identify chemical and physical changes at the macroscopic level;
Dasic	• calculate velocity and force given the formulas;
	• given an example, identify which of Newton's Laws is illustrated;
	• identify the characteristics of waves;
	• identify electricity as movement of charged particles.

Core High School Nature of Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1	1:1	Understand	the nature	and	origin o	of scien	tific	knowledge.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Evaluation)	9-12.N.1.1. Students are able to evaluate a scientific discovery to determine and describe how societal, cultural, and personal beliefs influence scientific investigations and interpretations.	 Visualizing with Models Scientific Theories and Laws Examples: telescope, birth control pill, penicillin, electricity Recognize scientific knowledge is not merely a set of static facts but is dynamic and affords the best current explanations. Examples: spontaneous generation, relativity, geologic time Discuss how progress in science can be affected by social issues. 		Chapter 1

	9-12.N.1.2. Students are able	Scientific Method	Chapter 1
	to describe the role of observation and evidence in	• Starting a problem	
	the development and	• Researching/gathering info	
	modification of hypotheses, theories, and laws.	• Hypothesis	
		Variables	
		Constants and controls	
(Synthesis)		Analyzing data	
		Drawing conclusions	
		• Research, communicate, and support a scientific argument.	
		• Recognize and analyze alternative explanations and models.	
		• Evaluate the scientific accuracy of information relevant to a specific issue (pseudo-science).	

Bloom's		Supporting Skills	Assessments	Resources
Taxonomy	Standard			
Level				
	9-12.N.2.1. Students are	What is science		Chapter I
	able to apply science process skills to design and	- categories of science		
	conduct student	- Investigations		
	investigations.	Scientific Method		
		Standards of Measurement		
		• Units and standards		
		• Measurement systems		
(Synthesis)		 International System of Units 		
		- SI Prefixes		
		- Converting SI units		
		Measuring Distance		
		Measuring Volume		
		Measuring Matter		
		- density		
		- derived units		
		Measuring time and temperature		

Indicator 2: Apply the skills necessary to conduct scientific investigations.

· · · · · · · · · · · · · · · · · · ·		
	- Kelvin vs. Fahrenheit	
	Communicating with graphs	
	• visual display	
	• line graph	
	• bar graph	
	• circle graph	
	Using Scientific Method	Chapter 16
	- Testing the viscosity of common	
	liquids	
	 Identify the questions and concepts to guide the development of hypotheses. Analyze primary sources of information to guide the development of the procedure. 	
	• Select and use appropriate instruments to extend observations and measurements.	
	• Revise explanations and models based on evidence and logic.	
	• Use technology and mathematic skills to enhance investigations, communicate results, and	

		defend conclusions.	
		Examples:	
		Computer-based data collection	
		Graphical analysis and representation	
		• Use appropriate technology to display data (i.e. spreadsheets, PowerPoint, web).	
	9-12.N.2.2. Students are	Lab safety	
	able to practice safe and effective laboratory	Investigation Design	
(Application)	techniques.	Density (accuracy vs. precision)	
	•	Open-ended Density	
		(Archimede's Principle)	
		 Handle hazardous materials properly. 	
		• Use safety equipment	

correctly.	
• Practice emergency procedure.	
• Wear appropriate attire.	
• Practice safe behaviors.	

Core High School Nature of Science Performance Descriptors

i ci ioi mailee Descriptors		
	High school students performing at the advanced level:	
Advanced	• given a scientific discovery, evaluate how different societal, cultural, and personal beliefs influenced	
Auvanceu	the investigation and its interpretation;	
	• design and conduct an investigation using an alternative student- developed hypothesis.	
	High school students performing at the proficient level:	
	• given a scientific discovery narrative, determine and describe how societal, cultural, and personal	
Proficient	beliefs influenced the investigation and its interpretation;	
	• describe the role of observation and evidence in the development and modification of hypotheses,	
	theories, and laws; then apply science process skills to design and conduct student investigations.	
	High school students performing at the basic level:	
	• describe the role of observation in the development of hypotheses, theories, and laws and conduct	
Basic	student investigations;	
	• given a scientific discovery narrative, identify the cultural and personal beliefs that influenced the	
	investigation.	

Core High School Science, Technology, Environment, and Society Standards, Supporting Skills, and Examples

Indicator 1: Analyze various implications/effects of scientific advancement within the environment and society.

Bloom's		Supporting Skills	Assessments	Resources
Taxonomy	Standard			
Level				
	9-12.S.1.1. Students are able	Ethical Issues		Chapter 1
	to explain ethical roles and	Examples:		
	responsibilities of scientists			
	and scientific research.	• Sharing of data		
		Accuracy of data		
		Acknowledgement of		
(Application)		sources		
		Following laws		
		Animal research		
		Human research		
		Managing hazardous		
		materials and wastes		
	9-12.S.1.2. Students are able	Examples: cloning, stem cells, gene		
	to evaluate and describe the	splicing, nuclear power, patenting		
	impact of scientific	new life forms, emerging diseases,		
(Evaluation)	discoveries on historical	AIDS, resistant forms of bacteria,		
	events and social, economic,	biological and chemical weapons,		
	and ethical issues.	global warming, and alternative		
		fuels		

Core High School Science Technology, Environment, and Society Performance Descriptors

	High school students performing at the advanced level:
Advanced	 modify a technology taking into consideration limiting factors of design;
	• given a narrative of a scientific discovery, defend a position on the impact of the ethical issues.
	High school students performing at the proficient level:
	• given a narrative of a scientific discovery, identify and evaluate the immediate and long-term
	consequences of scientific issues;
Proficient	• identify and explain ethical roles and responsibilities of scientists conducting a given research project.;
	• evaluate factors that could limit technological design;
	• given a narrative description of a resource, analyze and describe the benefits, limitations, cost, and
	consequences involved in its use, conservation, or recycling.
	High school students performing at the basic level:
	• given a narrative of a scientific discovery, identify the immediate consequences of scientific issues;
Docio	• identify ethical roles and responsibilities concerning a given research project;
Dasic	• identify factors that could limit technological design;
	• given a narrative description of a resource, describe a benefit and limitation involved in its use,
	conservation, or recycling.