Biology – (1st semester) High School Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Analyze the various structures and processes of the Earth system.

Bloom's		Supporting Skills	Assessments	Resources
Taxonomy	Standard			
(Comprehension)	 9-12.E.1.1. Students are able to explain how elements and compounds cycle between living and non- living systems. Diagram and describe the N, C, O and H₂O cycles. Describe the importance of the N, C, O and H₂O cycles to life on this planet. Examples: water cycle including evaporation, cloud formation, condensation. 	 Chapter 2 introduction of basic concepts needed to later address standards in Chapter 3: Describe the structure of an atom Associate the relationship between the structure of an atom and the structure of a molecule Grasp polarity as a property of water and how it applies to water's solubility Distinguish carbon-containing compounds like carbohydrates, nucleic acids, proteins, and lipids 		Biology Textbook

(Application)	9-12.E.1.2. Students are able to describe how atmospheric chemistry may affect global climate.	X	
	Examples : Greenhouse Effect, ozone depletion, ocean's effects on weather		
(Analysis)	9-12.E.1.3. Students are able to assess how human activity has changed the land, ocean, and atmosphere of Earth.	X	
	Examples : forest cover, chemical usage, farming, urban sprawl, grazing		

Indicator 2: Analyze essential principles and ideas about the composition and structure of the universe.

Bloom's		Supporting Skills	Assessments	Rsources
Taxonomy Level	Standard			
(Comprehension)	 Standard 9-12.E.2.1. Students are able to recognize how Newtonian mechanics can be applied to the study of the motions of the solar system. Given a set of possible explanations of orbital motion (revolution), identify those that make use of gravitational 	X		
	forces and inertia.			

	Core High School Earth/Space Science
	Performance Descriptors
	High school students performing at the advanced level:
Advanced	• predict the effect of an interruption in a given cycles;
	 predict how human activity may change the land, ocean, and atmosphere of Earth.
	High school students performing at the proficient level:
	• explain how H ₂ 0, N, C, and O cycle between living and non-living systems;
Proficient	• recognize how Newtonian mechanics can be applied to the study of the motions of the solar system;
	 describe how various factors may affect global climate;
	• explain how human activity changes the land, ocean, and atmosphere of Earth.
	High school students performing at the basic level:
	• given pictorial representations of the H ₂ 0 and C cycles, explain how elements and compounds move
Deste	between living and nonliving systems;
Basic	• identify the forces that cause motion in the solar system;
	• describe one factor that may affect global climate;
	• give an example of human activity that changes the land, ocean, or atmosphere of Earth.

Advanced High School Earth/Space Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Analyze the various structures and processes of the Earth system.

Bloom's Taxonomy	Standard	Supporting Skills	Assessments	Resources
Level				
(Application)	9-12.E.1.1A. Students are able to explain how elements and compounds cycle between living and non-living systems.	X		
	• Diagram and describe the P, S, and Ca cycles.			
	9-12.E.1.2A. Students are able to compare, quantitatively and qualitatively, methods used to determine geological time.	X		
(Analysis)	Examples : fossil record, radioactive decay, tree rings, geologic stratification, South Dakota geology			
	• Construct a geologic time scale over the past 4.8 billion years.			

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.E.2.1A. Students are able to describe the evidence supporting the Big Bang theory.	X		
	• Describe the four fundamental forces.			
(Analysis)	• Describe the organization of the solar system, the Milky Way galaxy, and the universe of galaxies.			
	• Examine the changing model of the universe using historical experimental evidence.			
	9-12.E.2.2A. Students are able to describe the physical and nuclear dynamics involved in the formation, evolution, and death of a star.	x		
(Analysis)	• Use the H-R diagram to determine the life stage of a star.			
	• Discuss how gravitational forces and the products of nuclear fusion reactions affect the dynamics of a star.			

Indicator 2: Analyze essential principles and ideas about the composition and structure of the universe.

	9-12.E.2.3A. Students are able to describe various ways data about the universe is collected.	X	
	• Describe how information is collected from star light.		
	Examples: star's mass, chemistry, intrinsic brightness, distance, speed, direction, and eventual fate		
(Application)	• Describe the use of instruments to collect data.		
	Examples: optical, radio, and x-ray telescopes, spectrometers, space probes, gamma ray detectors, remote sensing		
	Describe methods of measuring astronomical distance.		
	Examples: parallax, light years, astronomical units		

Core High School Nature of Science Standards, Supporting Skills, Assessments, and Resources

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessment	Resouces
(Evaluation)	9-12.N.1.1. Students are able to evaluate a scientific discovery to determine and describe how societal, cultural, and personal beliefs influence scientific investigations and interpretations. Examples: telescope, birth control pill, penicillin, electricity Examples: spontaneous generation, relativity, geologic time	 Recognize scientific knowledge is not merely a set of static facts but a dynamic and affords the best current explanations Discuss how progress in science can be affected by social issues, like not funding stem cell research, ethics of Preimplantation Genetic Diagnosis and stem cell transplants 		Biology text Chapter 1 Article: <u>Adam's Gift</u>

Indicator 1: Understand the nature and origin of scientific knowledge.

(Synthesis)	able to describe the role of observation and evidence in the development and modification of hypotheses, theories, and laws. • (pseudo-science).	 Predict outcome of experiments Generalize from data gathered in experiments Draw conclusions from data gathered and analyzed during experiments 	and Labs: Cell Differentiation Lab (Chapter 7) Osmosis & Diffusion Lab (Chapter 7)
			Brassica Genetics Lab (Chapter 11) Indian Corn

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Synthesis)	 9-12.N.2.1. Students are able to apply science process skills to design and conduct student investigations. Examples: Computer-based data collection Graphical analysis and representation Use appropriate technology to display data (i.e. spreadsheets, PowerPoint, web). 	 Identify the questions and concepts to guide the development of hypotheses. Analyze primary sources of information to guide the development of the procedure. Select and use appropriate instruments to extend observations and measurements Revise explanations and models based on evidence and logic. Use technology and mathematic skills to enhance investigations, communicate results, and defend conclusions. Example: computer-based data collection graphical analysis and representation use appropriate technology to display data		Biology text and Labs: Cell Differentiation Lab (Chapter 7) Osmosis & Diffusion Lab (Chapter 7) <i>Brassica</i> Genetics Lab (Chapter 11) Indian Corn Lab (Chapter 11) Lab Simulations Biodetectives

Indicator 2: Apply the skills necessary to conduct scientific investigations.

9-12.N.2.2. Students are able to practice safe and effective laboratory techniques. (Application)	 Handle hazardous materials properly. Use safety equipment correctly. Practice emergency procedure. Wear appropriate attire. Practice safe behaviors. 	Labwork
--	--	---------

Core High School Nature of Science Performance Descriptors

	Terrormance Descriptors
	High school students performing at the advanced level:
Advanced	• given a scientific discovery, evaluate how different societal, cultural, and personal beliefs influenced
	the investigation and its interpretation;
	 design and conduct an investigation using an alternative student- developed hypothesis.
	High school students performing at the proficient level:
	• given a scientific discovery narrative, determine and describe how societal, cultural, and personal
Proficient	beliefs influenced the investigation and its interpretation;
	• describe the role of observation and evidence in the development and modification of hypotheses,
	theories, and laws; then apply science process skills to design and conduct student investigations.
	High school students performing at the basic level:
	• describe the role of observation in the development of hypotheses, theories, and laws and conduct
Basic	student investigations;
	• given a scientific discovery narrative, identify the cultural and personal beliefs that influenced the
	investigation.

Core High School Physical Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Describe structures and	nroperties of	and changes in.	matter
indicator 1. Describe structures and	i properties or,	, and changes m,	matter

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.P.1.1. Students are able to use the Periodic Table to determine the atomic structure of elements, valence number, family relationships, and regions (metals, nonmetals, and metalloids).	X		
(Analysia)	• Determine protons, neutrons, electrons, mass number, and atomic number from the Periodic Table.			
(Anarysis)	• Determine the number of valence electrons for elements in the main (s&p) blocks of the Periodic Table.			
	• Identify the relative metallic character of an element based on its location on the Periodic Table.			

			1	DI 1 ()
(Comprehension)	 9-12.P.1.2. Students are able to describe ways that atoms combine. Name and write formulas for binary ionic and covalent compounds. Example: sodium chloride (NaCl), carbon dioxide (CO₂) Compare the roles of electrons in covalent, ionic, and metallic bonding. Discuss the special nature of carbon covalent bonds. 	 Name and write formulas for binary ionic and covalent compounds. Example: sodium chloride (NaCl), carbon dioxide (CO₂) Compare the roles of electrons in covalent and ionic compounds 		Biology text (Chapter 2)

(Application)	9-12.P.1.3. Students are able to predict whether reactions will speed up or slow down as conditions change.	X	
	concentration, surface area, and catalysts		
	9-12.P.1.4. Students are able to balance chemical equations by applying the Law of Conservation of Matter.	X	
(Application)	Trace number of particles in diagrams and pictures of balanced equations.		
	Example: Write out an equation with symbols:		
	$\begin{array}{c} Mg + 2HCL \rightarrow \\ MgCl_2 + 2H_2 \end{array}$		

	9-12.P.1.5. Students are able to distinguish among chemical, physical, and nuclear changes.	X	
	 Differentiate between physical and chemical properties used to describe matter. 		
	• Identify key indicators of chemical and physical changes.		
	• Describe the effects of changing pressure, volume, or temperature upon gases.		
(Comprehension)	• Identify characteristics of a solution and factors that affect the rate of solution formation.		
	 Explain the differences among nuclear, chemical, and physical changes at the atomic level. 		
	Examples: solute, solvent, concentrated, dilute, saturated, unsaturated, supersaturatedFactors affecting rate: agitation, heating, particle size, pictures of particles		

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.P.2.1. Students are able to apply concepts of distance and time to the quantitative relationships of motion using appropriate mathematical formulas, equations, and units.	x		
	Evaluate speed, velocity, and acceleration both qualitatively and quantitatively.			
	Examples:			
	Identify the sign (+,-, 0) of an object's acceleration based on velocity information.			
(Analysis)	Predict whether an object speeds up, slows down, or maintains a constant speed based on the forces acting upon it.			
(1 1111 j 010)	Calculate acceleration using the equation			
	$A_{avg} = \Delta V / \Delta t.$			
	 Given distance and time, calculate the velocity or speed of an object. 			
	• Create and interpret graphs of linear motion.			
	Example: Given a velocity-time or a distance-time graph with different slopes, determine the motion of an object.			
	Distinguish between velocity and acceleration as related to force.			
	9-12.P.2.2. Students are able to predict motion of an object using Newton's Laws.	X		
	• Describe how inertia is related to Newton's First Law.			
	• Explain the effect of balanced and unbalanced forces.			
(Application)	 Identify the forces at work on action/reaction pairs as distinguished from balanced forces. 			
(inpplication)	Examples:			
	Draw a linear force diagram for the forces acting on an object in contact with another.			
	Identify action/reaction pairs.			
	Explain how force, mass, and acceleration are related.			

Indicator 2: Analyze forces, their forms, and their effects on motions.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.P.2.3. Students are able to relate concepts of force, distance, and time to the quantitative relationships of work, energy, and power.	X		
	• Apply appropriate mathematical formulas and equations to concepts using appropriate units.			
(Application)	Examples:			
	Calculate power			
	Given force, distance and time.			
	Calculate work done on an object given force and distance.			

Indicator 3: Analyze interactions of energy and matter.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.P.3.1. Students are able to describe the relationships among potential energy, kinetic energy, and work as applied to the Law of Conservation of Energy.	X		
	• Describe how energy can be transferred and transformed to produce useful work.			
	Examples:			
(Application)	Diagram simple energy transfers, describing the objects and the forms of energy gained and lost.			
	Use simple machines as an example of the transmission of energy.			
	 Given the formulas, calculate the mechanical advantage and efficiency of selected systems. 			
	• Explain methods of heat transfer.			
	Examples: conduction, radiation, and convection			

Indicator 3: Analyze	interactions of	fenergy and	matter.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.P.3.2. Students are able to describe how characteristics of waves are related to one another.	X		
	• Relate wavelength, speed, and frequency $(v=\Box f)$.			
	Distinguish between transverse and longitudinal waves.			
	Examples:			
(Comprehension)	Discuss changes in frequency of waves using the Doppler Effect.			
	Compare the energy of different frequency ranges of waves with in the electromagnetic spectrum.			
	Describe how different colors of light waves have different amounts of energy.			

Bloom's Taxonomy		Supporting Skills	Assessments	Resources
Level	Standard			
	9-12.P.3.3. Students are able to describe electrical effects in terms of motion and concentrations of charged particles.	X		
(Application)	• Relate potential difference to current.			
	• Describe how static electricity is different from current electricity.			
	• Interpret and apply Ohm's Law.			
	• Describe electrical attractions and repulsions.			
	Describe how magnetism originates from motion of charged particles.			

	High school students performing at the advanced level:			
	 predict the type of bonds formed as elements combine; 			
	 balance chemical equations involving polyatomic ions; 			
Advanced	 analyze and solve a problem involving velocity, acceleration, force, work, energy, or power; 			
	 construct or design a model that illustrates the Law of Conservation of Energy to show energy changes from potential to 			
	kinetic in doing work;			
	 describe electrical effects in terms of motion and concentrations of charged particles. 			
	High school students performing at the proficient level:			
	 use the Periodic Table to determine the properties of elements and the ways they combine; 			
	 given a variable, predict whether reactions will speed up or slow down as conditions change; 			
	balance simple chemical equations;			
Ductions	 describe chemical, physical, and nuclear changes at the atomic and macroscopic levels; 			
Froncient	 calculate velocity, acceleration, force, work, energy, and power given the formulas; 			
	 given the forces acting on an object, predict its motion using Newton's Laws; 			
	 apply the Law of Conservation of energy to show energy changes from potential to kinetic in doing work; 			
	 describe how characteristics of waves are related to one another; 			
	describe electrical effects in terms of motion and concentrations of charged particles.			
	High school students performing at the basic level:			
	• use the Periodic Table to determine the properties of the 1 st 18 elements;			
	 provide the coefficients for an unbalanced synthesis or decomposition equation; 			
Basic	identify chemical and physical changes at the macroscopic level;			
Dasic	calculate velocity and force given the formulas;			
	 given an example, identify which of Newton's Laws is illustrated; 			
	identify the characteristics of waves;			
	 identify electricity as movement of charged particles. 			

Core High School Life Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Understand the fundamental structures, functions, classifications, and mechanisms found in living things.

Bloom's	Standard	Supporting Skills	Assessments	Resources
Taxonomy Level				
(Analysis)	 9-12.L.1.1. Students are able to relate cellular functions and processes to specialized structures within cells. Transport Examples: cell membrane, homeostasis Photosynthesis and respiration Examples: ATP-ADP energy cycle Role of enzymes Mitochondria Chloroplasts Storage and transfer of genetic 	 explain how homeostasis is maintained within living systems (PROFICIENT) describe the relationship between structure and function (cells, tissues, organs, organ systems, and organism, population, community, ecosystem, biosphere) describe and give examples of chemical reactions required to sustain life (hydrolysis, dehydration, synthesis, ADP/ATP, role of enzymes) (PROFICIENT) identify DNA as the structure that carries the genetic code (BASIC) relate cellular functions to specialized structures within cells (Including: cytoplasm, nucleus, nucleolus, ribosomes, endoplasmic reticulum, Golgi apparatus, lysosomes, vacuoles, mitochondria, choloplasts, cytoskeleton, centrioles, cell wall, cell membrane) identify DNA as the structure that carries the genetic code (BASIC) 		Biology text (Chapter 2, 7, & 10)

information Examples: replication, transcription, and translation • Cell life cycles Examples: somatic cells (mitosis), germ cells (meiosis)	 relate cell membrane structure with its role regulating what enters and leaves cell (Including: peripheral proteins, integral proteins) compare and contrast the mechanisms of different types of active and passive transport (Including: osmosis, diffusion, facilitated diffusion, ion channels, sodium-potassium pump, endocytosis (phagocytosis, pinocytosis), and exocytosis) compare and contrast the effect on cells placed in a hypertonic, hypotonic, or isotonic solution (including: plasmolysis, cytolysis) describe the relationships between the levels of organization in multicellular organisms (cells, tissues, organs, organ systems, and organism) (PROFICIENT) (Tissue formation, development of new cells from original stem cells) (ADVANCED) predict how homeostasis is maintained within living systems (ADVANCED) Explain the relationship of surface area to volume in determining cell size Arrange the events in the cell cycle in sequence and predict what happens next (Interphase-G1, G2, S; prophase, metaphase, anaphase, telophase, cytokinesis) 		
---	---	--	--

Predict the outcome of changes in the cell cycle (ADVANCED)
Compare and contrast the growth of cancer cells and normal cells
 Discuss the role of stem cells in medicine (Technology & Society- pg 253)
• arrange the events in the meiosis I and II in sequence and predict what happens next
• compare and contrast life cycles in somatic (mitosis) and germ cells (meiosis) PROFICIENT
distinguish between haploid and diploid
 describe the early contributions of Frederick Griffith, Oswald Avery, Alfred Hershey/Martha Chase, Linus Pauling, Robert Corey, Rosalind Franklin, James Watson, Francis Crick, Sydney Brenner, Walter Gilbert that contributed to the understanding of DNA structure and function
• summarize the relationship between genes and DNA
• describe the structure of the DNA molecule and how it replicates, stores, and transfers genetic information replication, transcription, translation
explain how protein production is regulated (operon) (ADVANCED)

(Application)	 9-12.L.1.2. Students are able to classify organisms using characteristics and evolutionary relationship of major taxa. Kingdoms Examples: animals, plants, fungi, protista. 	 describe and give examples of chemical reactions required to sustain life (hydrolysis, dehydration synthesis, role of enzymes) (PROFICIENT) explain how DNA determines protein formation describe the role of enzymes in replication, transcription, and translation explain the role of RNA in transcription and translation (r-RNA, m-RNA, t-RNA) distinguish between introns and exons; codons and anticondons; Distinguish between prokaryotic and eukaryotic cells 	Biology text (Chapter 7)
(Application)	 Kingdoms Examples: animals, plants, fungi, protista, monera Phyla Examples: invertebrates, 		

	vertebrates,		
	divisions of plants		
	Note: There is an ongoing scientific debate about the number of groupings and which organisms should be included in each.		
	9-12.L.1.3. Students are able to identify structures and function relationships within major taxa.	X	
(Analysis)	Examples:		
	Relate how the layers in a leaf support leaf function.		
	Interaction of agonist and antagonist muscles to support bone movement		

Bloom's Taxonomy	Standard	Supporting Skills	Assessments	Resources
(Application)	 Standard 12.L.2.1. Students re able to predict theritance patterns sing a single allele. Solve problems involving simple dominance, co- dominance, and sex-linked traits using Punnett squares for F1 and F2 generations. Examples: color blindness, wavy hair Discuss disorders resulting from alteration of a single gene. Example: hemophilia, cystic fibrosis 	 describe the early contributions of Gregor Mendel to the science of genetics explain the relationships between the P, F₁, and F₂ generations distinguish between true breeding and hybrids; genes and alleles; dominant and recessive; homozygous and heterozygous; phenotype and genotype describe what happens during segregation explain the role of probability in predicting genetic outcomes predict inheritance patterns using a Punnett square for a single allele trait (ADVANCED) solve problems involving simple dominance, co-dominance, and sex-linked traits using Punnett squares for F1 and F2 generations (APPLICATION) describe what happens during independent assortment predict complex inheritance patterns using a Punnett square to predict complex inheritance patterns using a Punnett square to predict complex inheritance patterns using a Punnett square to predict complex inheritance patterns using a Punnett square to predict complex inheritance patterns using a Punnett square involving multiple alleles 		Biology text (Chapter 11, 14, & 12)

Indicator 2: Analyze various patterns and products of natural and induced biological change.

	compare and contrast dominant, codominant, and incompletely dominant traits
	• explain gene linkage and its role in mapping chromosomes
	• explain how sex is determined
	• explain how a karyotype is created and what it is used for
	distinguish between autosomes and sex chromosomes
	• describe how a pedigree is used to study genetic relationships within a family
	• predict inheritance patterns using a Punnett square for a single allele (ADVANCED)
	 solve problems involving simple dominance, co-dominance using blood group genes
	 classify disorders resulting from alterations of a single gene (APPLICATION) (cystic fibrosis, sickle cell disease, Huntington's, PKU, Tay-Sachs)
	• Explain why sex-linked disorders are more common in males than females.
	 classify disorders sex-linked disorders (APPLICATION) (hemophilia, colorblindness, Duchenne muscular dystrophy)

		 predict inheritance patterns using a Punnett square for a single allele solve problems involving sex-linked traits (ADVANCED) classify disorders caused by non-disjunction (APPLICATION) (Down syndrome, Turner's, Klinefelter's) predict the outcome of chromosomal and gene mutations on genetic code (point, frameshift, polyploidy) 	
	9-12.L.2.2. Students are able to describe how genetic recombination, mutations, and natural selection lead to adaptations, evolution, extinction, or the emergence of new species.	X	
(Synthesis)	Examples : behavioral adaptations, environmental pressures, allele variations, bio- diversity		
	• Use comparative anatomy to support evolutionary relationships.		

Bloom's	Standard	Supporting Skills	Assessments	Resources
Taxonomy Level				
	9-12.L.3.1. Students are able to identify factors that can cause changes in stability of populations, communities, and ecosystems.	X		
	• Define populations, communities, ecosystems, niches and symbiotic relationships.			
(Comprehension)	• Predict the results of biotic and abiotic interactions.			
	Examples:			
	Responses to changing of the seasons Tolerances (temperature, weather, climate) Dormancy and migration Fluctuation in			
	available resources (water, food, shelter)			

Indicator 3: Analyze how organisms are linked to one another and the environment.

Human activity Biogeochemical		
cycles		
Cooperation and		
competition in ecosystems		
Response to external stimuli		

Core High School Life Science Performance Descriptors

	High school students performing at the advanced level:
	 explain the steps of photophosphorylation and the Calvin Cycle;
	• analyze chemical reaction and chemical processes involved in the Calvin Cycle and Krebs Cycle;
	• predict the function of a given structure;
Advanced	 predict the outcome of changes in the cell cycle;
	• explain how protein production is regulated;
	 predict how homeostasis is maintained within living systems;
	• predict how traits are transmitted from parents to offspring;
	construct an original dichotomous key.
	High school students performing at the proficient level:
	describe and give examples of chemical reactions required to sustain life (hydrolysis, dehydration
	synthesis, photosynthesis, cellular respiration, ADP/ATP, role of enzymes);
	• describe the relationship between structure and function (cells, tissues, organs, organ systems, and
Proficient	organisms);
	 compare and contrast the cell cycles in somatic and germ cells;
	 tell how DNA determines protein formation;
	 explain how homeostasis is maintained within living systems;
	 explain how traits are transmitted from parents to offspring;

	• predict the impact of genetic changes in populations (mutation, natural selection and artificial selection, adaptation/extinction);		
	• predict how life systems respond to changes in the environment;		
	• classify organisms using a dichotomous key.		
	High school students performing at the basic level:		
	• name chemical reactions required to sustain life (hydrolysis, dehydration synthesis, photosynthesis,		
	cellular respiration, ADP/ATP, role of enzymes);		
	 recognize that different structures perform different functions; 		
Basic	• describe the life cycle of somatic cells;		
	• identify DNA as the structure that carries the genetic code;		
	• define homeostasis;		
	• identify that genetic traits can be transmitted from parents to offspring;		
	• know the purpose of a dichotomous key.		

Advanced High School Life Science Standards, Supporting Skills, and Examples

Indicator 1: Understand the fundamental strue	tures, functions, classifications	, and mechanisms found i	in living things.
---	-----------------------------------	--------------------------	-------------------

Bloom's		Supporting Skills	Assessments	Resources
Taxonomy	Standard			
Level				
(Synthesis)	9-12.L.1.1A. Students are able to explain the physical and chemical processes of photosynthesis and cell respiration and their importance to plant and animal life.	X		
	photophosphorylation, Calvin Cycle and Krebs Cycle			
(Synthesis)	9-12.L.1.2A. Students are able to describe how living systems use biofeedback mechanisms to maintain homeostasis. Examples: endocrine, nervous, immune	X		

(Synthesis)	9-12.L.1.3A. Students are able to explain how gene expression regulates cell growth and differentiation. Examples: Tissue formation Development of new cells from original stem cells	 explain the process of specialization (ADVANCED) describe the relationships between the levels of organization in multicellular organisms (cells, tissues, organs, organ systems, and organism) (PROFICIENT) explain how gene expression regulates cell growth and differentiation (Tissue formation, development of new cells from original stem cells) (ADVANCED) predict how homeostasis is maintained within living systems (ADVANCED) Explain how the cell cycle is regulated 	Biology text (Chapter 7 & 10)
(Application)	9-12.L.1.4A. Students are able to identify factors that change the rates of enzyme catalyzed reactions. Examples: inhibitors, co- enzymes, ph balance, environment	X	
(Analysis)	9-12.L.1.5A. Students are able to classify organisms using characteristics and evolutionary relationships	Explain the differences between prokaryotic and eukaryotic cells	Biology text (Chapter 7)

Indicator 2: Analyze various patterns and products of natural and induced biological change.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.L.2.1A. Students are able to predict the results of complex inheritance patterns involving multiple alleles and genes.	• Predict the results of complex inheritance patterns using a Punnett square involving multiple alleles (blood types)		Biology text (Chapter 11)
	Examples : human skin color, polygenic inheritance			
(Synthesis)	 Relate crossing over to genetic variation. Evaluate changes in 			
	gene frequencies in populations to see if Hardy-Weinberg equilibrium exists or evolution has occurred.			

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.L.3.1A. Students are able to relate genetic, instinct, and behavior patterns to biodiversity and survival of species.	X		
	• Compare and contrast learned behavior vs instinct.			
(Synthesis)	Example: nature vs nurture			
	• Relate the introduction of non-native species to the disruption of an ecosystem.			
	Examples: Asian lady beetle, Asian carp, zebra mussels, Eurasian watermilfoil, salt cedar			

Indicator 3: Analyze how organisms are linked to one another and the environment.

Core High School Science, Technology, Environment, and Society Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Analyze various implications/effects of scientific advancement within the environment and socie	ety.
--	------

Bloom's		Supporting Skills	Assessments	Resources
Taxonomy Level	Standard			
	9-12.S.1.1. Students are able to explain ethical roles and responsibilities of scientists and scientific research.	X		
	Examples:			
(Application)	Sharing of data Accuracy of data Acknowledgement of sources Following laws Animal research Human research Managing hazardous materials and wastes			
(Evaluation)	9-12.S.1.2. Students are able to evaluate and describe the impact of scientific discoveries on historical events and social, economic, and ethical issues. Examples: cloning, stem cells, gene splicing, nuclear nower patenting new life	X		

forms, emerging diseases, AIDS, resistant forms of bacteria, biological and chemical weapons, global warming, and alternative fuels		

Indicator 2: Analyze the relationships/interactions among science, technology, environment, and society.

Bloom's		Supporting Skills	Assessments	Resources
Taxonomy	Standard			
Level				
	9-12.S.2.1. Students are able to describe immediate and long-term consequences of potential solutions for technological issues.	X		
(Evaluation)	Examples : environmental, communication, internet, entertainment, construction, manufacturing, power and transportation, energy sources, health technology, and biotechnology issues			
	• Describe how the pertinent technological system operates.			
	Example: waste management facility			
(Analysis)	9-12.S.2.2. Students are able to analyze factors that could	X		

	limit technological design		
	Examples : ethics, environmental impact, manufacturing processes, operation, maintenance, replacement, disposal, and liability		
(Synthesis)	9-12.S.2.3. Students are able to analyze and describe the benefits, limitations, cost, and consequences involved in using, conserving, or recycling resources.	X	
(2)(5))	Examples : mining, agriculture, medicine, school science labs, forestry, energy, disposable diapers, computers, tires		

Core figh School Science Technology, Environment, and Societ	Cor	e High Schoo	ol Science Tech	inology, Envir	onment, and Societ
--	-----	--------------	-----------------	----------------	--------------------

	Performance Descriptors					
	High school students performing at the advanced level:					
Advanced	 modify a technology taking into consideration limiting factors of design; 					
	• given a narrative of a scientific discovery, defend a position on the impact of the ethical issues.					
	High school students performing at the proficient level:					
	• given a narrative of a scientific discovery, identify and evaluate the immediate and long-term consequences of					
	scientific issues;					
Proficient	• identify and explain ethical roles and responsibilities of scientists conducting a given research project.;					
	evaluate factors that could limit technological design;					
	• given a narrative description of a resource, analyze and describe the benefits, limitations, cost, and consequences					
	involved in its use, conservation, or recycling.					
	High school students performing at the basic level:					
	• given a narrative of a scientific discovery, identify the immediate consequences of scientific issues;					
Basic	 identify ethical roles and responsibilities concerning a given research project; 					
	• identify factors that could limit technological design;					
	• given a narrative description of a resource, describe a benefit and limitation involved in its use, conservation, or					
	recycling.					

Core High School Science, Technology, Environment, and Society Standards, Supporting Skills, Assessments, and Resources

				-
Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.S.1.2. Students are able to evaluate and describe the impact of scientific discoveries on historical events and social, economic, and ethical issues.	 Compare and contrast the use of embryos for various purposes Make a decision regarding the use of genetic technologies 		Biology text (Chapter 7) Adam's Gift
(Evaluation)	Examples : cloning, stem cells, gene splicing, nuclear power, patenting new life forms, emerging diseases, AIDS, resistant forms of bacteria, biological and chemical weapons			
(Evaluation)	 9-12.NC.1.1. Compare and contrast how societal changes mirror innovations and emerging technologies. Example: Effect of emerging technology on future legal issues. 	• Evaluate effectiveness of current laws in issues relating to emerging technologies (stem cell research, alternative energies, antibiotic resistance)		Biology text Chapter 7 Adam's Gift

	Ind	licator	1:	Analyze	e various	implic	ations/	effects	of s	cientific	advancement	within	the en	wironment	and	society.
--	-----	---------	----	---------	-----------	--------	---------	---------	------	-----------	-------------	--------	--------	------------------	-----	----------

(Evaluation)	9-12.NC.1.2. Predict how the evolution of technology will influence the design and development of future technology.	Assess the impact of a developing technology on future technology	Biology text Chapter 7 Adam's Gift
(Analysis)	9-12.NC.2.1. Analyze technology systems to make informed choices.	Analyze cloning and stem cell procedures to make informed personal choices	Biology text Chapter 7 Adam's Gift
(Analysis)	9-12.NC.3.1. Analyze intended and unintended impacts of a system.	• Connect intended use of embryos in in vitro fertilization with the unintended use in stem cell research	Biology text Chapter 7 Adam's Gift

Core High School Science Technology, Environment, and Society

	Performance Descriptors
	High school students performing at the advanced level:
Advanced	 modify a technology taking into consideration limiting factors of design;
	• given a narrative of a scientific discovery, defend a position on the impact of the ethical issues.
	High school students performing at the proficient level:
	 given a narrative of a scientific discovery, identify and evaluate the immediate and long-term consequences of scientific issues;
Proficient	 identify and explain ethical roles and responsibilities of scientists conducting a given research project.; evaluate factors that could limit technological design;
	 given a narrative description of a resource, analyze and describe the benefits, limitations, cost, and consequences involved in its use, conservation, or recycling.
	High school students performing at the basic level:
	• given a narrative of a scientific discovery, identify the immediate consequences of scientific issues;
	 identify ethical roles and responsibilities concerning a given research project;
Basic	• identify factors that could limit technological design;
	• given a narrative description of a resource, describe a benefit and limitation involved in its use, conservation, or recycling.

	Core High School Nature, Concepts and Systems Performance Descriptors				
Advanced	 High school students performing at the advanced level: predict how the evolution of technology will influence the development of future technology evaluate an example of an intended and unintended impact in a change system 	Fo			
Proficient	 High school students performing at the proficient level: compare and contrast how an emerging technology changes society 				

Formatted: Bullets and Numbering

	analyze an example of an intended and unintended impact in a system
Basic	High school students performing at the basic level:
	• identify an example of an intended and unintended impact in a system