2nd Grade Math Learning Targets

Algebra:

2.A.2.1 Students are able to use concepts of equal to, greater than, and less than to compare numbers (0-100). - Comprehension

- I can explain what "equal to" means. (2.A.2.1)
- I can explain what the = sign means. (2.A.2.1)
- I can say which number is equal to another number. (2.A.2.1)
- I can use the symbol = to say which number is equal to another number. (2.A.2.1)
 - I can use the symbol = to say what number / expression is equal to another number / expression.
 - Expression = one side of an equation (11 + 1)
 - 11 + 1 (□) 5 + 7
- I can explain what "greater than" means. (2.A.2.1)
- I can say which number is greater than another number. (2.A.2.1)
- I can use the symbol > to say which number is greater than another number. (2.A.2.1)
- I can explain what "less than" means. (2.A.2.1)
- I can say which number is less than another number. (2.A.2.1)
- I can use the symbol < to say which number is less than another number. (2.A.2.1)

2.A.2.2 Students are able to solve open addition and subtraction sentences with one unknown (\Box) using numbers equal to or less than 20. - Application

- I can find the missing unknown (\Box) in an addition sentence. (sums up to 20) (2.A.2.2)
 - Example: $11 + 1 = \Box / \Box = 11 + 1$
 - Example: $11 + \Box = 12 / \Box + 1 = 12$
 - Example: $12 = 11 + \Box / 12 = \Box + 1$
- I can find the missing unknown (□) in a subtraction sentence. (minuend of 20 or less) (2.A.2.2)
 - Example: $18 1 = \Box / \Box = 18 1$
 - Example: $18 \Box = 17 / \Box 1 = 17$
 - Example: $17 = 18 \Box / 17 = \Box 1$

2.A.2.3 Students are able to balance simple addition and subtraction equations using sums up to 20. - Application

- I can say what "expression" means. (2.A.2.3)
 - \circ Example: Expression = one side of an equation (4 + 3)
- I can say what "equation" means. (2.A.2.3)
 - Example: Equation = two expressions that equal each other (4 + 3 = 7)
- I can find the missing unknown (□) in an addition equation. (sums up to 20) (2.A.2.3)
 0 11 + 1 = (□) + 7
- I can find the missing unknown (□) in a subtraction equation. (minuend of 20 or less) (2.A.2.3)
 - 11 + 1 = (□) + 7
- I can explain what it means to "balance an equation." (2.A.2.3)

2.A.3.1 Students are able to write and solve number sentences from word problems. - Application

- Teacher Definition of Number Sentence = A mathematical statement that has numbers, at least one operation sign, and an equal or inequality sign.
- I can write number sentences / equations for word problems / story problems. (2.A.3.1)
- I can solve number sentences / equations for word problems / story problems. (2.A.3.1)

2.A.4.1 Students are able to find and extend growing patterns using symbols, objects and numbers. - Comprehension

- I can recognize a pattern unit of objects. (2.A.4.1) also 1st grade standard
- I can show what comes next in a pattern of objects. (2.A.4.1) also 1^{st} grade standard
- I can recognize a pattern unit of symbols. (2.A.4.1) also 1st grade standard
- I can show what comes next in a pattern of symbols. (2.A.4.1) also 1^{st} grade standard
- I can recognize a pattern unit of numbers. (2.A.4.1)
- I can show what comes next in a pattern of numbers. (2.A.4.1)

2.A.4.2 Students are able to determine likenesses and differences between sets. - Comprehension

- I can tell how two sets of numbers are the same. (2.A.4.2)
- I can tell how two sets of numbers are different. (2.A.4.2)
- I can tell how two sets of items are the same. (2.A.4.2)
- I can tell how two sets of items are different. (2.A.4.2)

Geometry:

2.G.1.1 Students are able to use the terms side and vertex (corners) to identify plane and solid figures. - Comprehension

- I can point out plane figures. (2.G.1.1)
 - Plane figure = a figure that is two dimensional (has length and width but no thickness)
 - o Hexagon / circle / square / triangle / pentagon / octagon / rectangle
- I can point out solid figures. (2.G.1.1)
 - Solid figure = a figure that is three dimension (has length, width and thickness)
 - Sphere / cube / rectangular prism / cylinder / cone / triangular prism
- I can point out a side. (2.G.1.1)
 - \circ Side = edge of a plane or solid figure
- I can point out a vertex. (2.G.1.1)
 - Vertex = the point at which the sides of a polygon meet (corner)
 - \circ Vertex = the point at which the edges of a solid meet (corner)
- I can point out how many sides and vertexes a hexagon has. (2.G.1.1)
- I can point out how many sides and vertexes a circle has. (2.G.1.1)
- I can point out how many sides and vertexes a square has. (2.G.1.1)
- I can point out how many sides and vertexes a triangle has. (2.G.1.1)
- I can point out how many sides and vertexes a pentagon has. (2.G.1.1)
- I can point out how many sides and vertexes an octagon has. (2.G.1.1)
- I can point out how many sides and vertexes a rectangle has. (2.G.1.1)

- I can point out how many sides and vertexes a sphere has. (2.G.1.1)
- I can point out how many sides and vertexes a cube has. (2.G.1.1)
- I can point out how many sides and vertexes a rectangular prism has. (2.G.1.1)
- I can point out how many sides and vertexes a cylinder has. (2.G.1.1)
- I can point out how many sides and vertexes a cone has. (2.G.1.1)
- I can point out how many sides and vertexes a triangular prism has. (2.G.1.1)

2.G.2.1 Students are able to identify geometric figures regardless of position and orientation in space. - Knowledge

- I can point out a triangle no matter how it is positioned on paper. (2.G.2.1)
- I can point out a square no matter how it is positioned on paper. (2.G.2.1)
- I can point out a rectangle no matter how it is positioned on paper. (2.G.2.1)
- I can point out a pentagon no matter how it is positioned on paper. (2.G.2.1)
- I can point out a hexagon no matter how it is positioned on paper. (2.G.2.1)

Measurement:

Time:

2.M.1.1 Students are able to tell time to the minute using digital and analog clocks and relate time to daily events. - Knowledge

- I can tell time to the minute on a digital clock. (2.M.1.1)
- I can tell time to the minute on an analog clock. (2.M.1.1)
- I can tell what time daily events happen. (2.M.1.1)

2.M.1.2 Students are able to use the calendar to solve problems. - Application

• I can answer questions using a calendar. (2.M.1.2)

Money:

2.M.1.3 Students are able to determine the value of a collection of like and unlike coins with a value up to \$1.00. - Application

- I can count pennies. (2.M.1.3) also 1st grade standard (up to 25¢)
- I can count pennies and nickels. (2.M.1.3) also 1st grade standard (up to 25ϕ)
- I can count pennies and dimes. (2.M.1.3) also 1st grade standard (up to 25ϕ)
- I can count pennies, nickels, and dimes. $(2.M.1.3) \text{also } 1^{\text{st}}$ grade standard (up to 25ϕ)
- I can count pennies and quarters. (2.M.1.3)
- I can count pennies, nickels, dimes, and quarters. (2.M.1.3)
- I can count a collection of coins up to \$1.00. (2.M.1.3)

2.M.1.4 Students are able to represent and write the value of money using the "¢" sign and in decimal form using the \$ sign. - Knowledge

- I can write the amount of money I have using the "¢" sign. (2.M.1.4)
- I can write the amount of money I have using the "\$" sign and a decimal point. (2.M.1.4)

U.S. Customary:

2.M.1.5 Students are able to use whole number approximations for capacity using nonstandard units of measure. - Comprehension

- I can use a variety of objects to measure the amount a container can hold. (2.M.1.5)
 - Example The jar holds about how many marbles.
 - Example How many small jars of water will it take to fill the big jar.

2.M.1.6 Students are able to solve everyday problems by measuring length to the nearest inch or foot. - Comprehension

- I can solve everyday problems by measuring length to the nearest inch. (2.M.1.6)
- I can solve everyday problems by measuring length to the nearest foot. (2.M.1.6)

2.M.1.7 Students are able to locate and name concrete objects that are about the same length, height, weight, capacity, and temperature as a given concrete object. - Application

- I can find objects that are the same length. (2.M.1.7)
- I can find objects that are the same height. (2.M.1.7)
- I can find objects that are the same weight. (2.M.1.7)
- I can find objects that are the same capacity. (2.M.1.7)
- I can find objects that are the same temperature. (2.M.1.7)

Number Sense:

2.N.1.1 Students are able to read, write, count, and sequence numerals to 100. - Comprehension

- I can say the numbers in order from 0 to 100. (2.N.1.1) should you maybe go higher since 3rd goes to hundred thousands)
- I can put numbers (up to 100) in order from smallest to largest. (2.N.1.1)
- I can say the numbers in order from 100 to 0. (2.N.1.1)
- I can put numbers (up to 100) in order from largest to smallest. (2.N.1.1)
- I can say the number before each number from 0 to 100. (2.N.1.1)
- I can say the number after each number from 0 to 100. (2.N.1.1)
- I can say the number (up to 100) that comes between two numbers. (2.N.1.1)
- I can count by twos from 0 to 100. (2.N.1.1)
- \circ I can count by twos from 100 to 0.
- I can count by fives from 0 to 100. (2.N.1.1)
 - $\circ~$ I can count by fives from 100 to 0.
- I can count by tens from 0 to 100. (2.N.1.1)
 - \circ I can count by tens from 100 to 0.
- I can count by twenty-fives to 100. (2.N.1.1)
- I can write the numbers in order from 0 to 100. (2.N.1.1)
- I can write the numbers in order from 100 to 0. (2.N.1.1)
- I can match number words I hear to numbers 0 to 100. (2.N.1.1)
- I can say what "expanded notation" means (2.N.1.1)
 - Expanded Notation -25 = 20 + 5

• I can write the numbers 0 to 100 in expanded notation. (2.N.1.1)

2.N.1.2 Students are able to identify and represent fractions as parts of a group. - Comprehension

- I can find $\frac{1}{2}$ of a group. (2.N.1.2)
- I can find 1/3 of a group. (2.N.1.2)
- I can find 2/3 of a group. (2.N.1.2)
- I can find $\frac{1}{4}$ of a group. (2.N.1.2)
- I can find $\frac{3}{4}$ of a group. (2.N.1.2)

2.N.2.1 Students are able to solve two-digit addition and subtraction problems written in horizontal and vertical formats using a variety of strategies. - Application

- I can solve two digit addition problems written vertically. (2.N.2.1)
- I can solve two digit addition problems written horizontally. (2.N.2.1)
- I can solve two digit subtraction problems written vertically. (2.N.2.1)
- I can solve two digit subtraction problems written horizontally. (2.N.2.1)

2.N.3.1 Students are able to solve addition and subtraction problems up to 100 in context. - Application

- I can solve addition story problems / word problems. (2.N.3.1)
- I can solve subtraction story problems / word problems. (2.N.3.1)
 - I can estimate to see if my answer makes sense.

Statistics and Probability:

2.S.1.1 Students are able to use interviews, surveys, and observations to gather data. - Comprehension

- I can gather data by questioning people. (2.S.1.1)
- I can gather data by reading information. (2.S.1.1)
- I can gather data by observing what is around me. (2.S.1.1)

2.S.1.2 Students are able to represent data sets in more than one way. - Application

- I can show information I gather in bar graphs. (2.S.1.2)
- I can show information I gather in pictographs. (2.S.1.2)
- I can show information I gather in tables. (2.S.1.2)

2.S.1.3 Students are able to answer questions about and generate explanations of data given in tables and graphs. - Comprehension

- I can answer questions when using a table or graph. (2.S.1.3)
- I can explain my answer to a question when using a table or graph. (2.S.1.3)

2.S.2.1 Students are able to list possible outcomes of a simple event and make predictions about which outcome is more or less likely to occur. - Application

• I can make a list of possible results for a simple event. (2.S.2.1)

• I can predict if an outcome is more or less likely to happen. (2.S.2.1)